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Objective

« Learn basic concepts of SystemVerilog in verification point of view
— Most of the SystemVerilog concepts are for verification

 Lots of slides and information, not low-level details

— To become professional with SV, one must read the standard, explore
and test, and read the standard more

* Not all tools (compilers, simulators) are supporting all the aspects
— Tool manuals need to be read too

(
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Things left out

« Detailed information about how the language is processed
In the simulator, eg. scheduling

— this might be vital information when you really dig into SV, as there
are all kinds of possibilities provided

* Most of the SystemVerilog standard:

— Use this slide set only as quick start guide, refer to the standard for
usage
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SystemVerilog

« SystemVerilog is extended and improved Verilog to meet better
requirements in HW verification

— Originally an extension to Verilog, but merged to one language

« Originally developed by Accellera, then later standardized by IEEE
— Currently IEEE standard 1800-2017

« Extends Verilog-2005

— SV is Verilog —compatible (as C++ is C compatible), but SV allows RTL
descriptions that would not work on Verilog compilers

(
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SystemVerilog

 Oiriginally an object-oriented programming extension to
Verilog
— The "system” part
— Purposefully designed to improve verification tasks

— “de-facto” assertion language

* OOP allows building testbenches and other useful tools to
help designing, implementing, testing, and verifying

(. — OOP brings abstraction and reuse
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About this lecture

« Before diving into the object-oriented properties, this
lecture explains the basic concepts in SystemVerilog

* Most concepts are common to design and verification

« Large number of slides, half of them covered on the lecture

— All slides shared for self-study
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Comments etc.

« A commentline starts with //
« A comment block starts with /* and ends with */

« something starting with $ is a system task/function
— in addition to built in, you can create your own!

« Compiler directives start with * like “define (in Finnish qwerty, shift+")

(
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Number literals

659 /Il is a decimal number
'h 837FF /Il is a hexadecimal number
'07460 /Il is an octal number
4af /'is illegal (hexadecimal format requires 'h)
4'p1001 I is a 4-bit binary number
5D 3 /Il is a 5-bit decimal number (bases are not case sensitive)
3'b01x /I is a 3-bit number with the least significant bit unknown
12'hx /l'is a 12-bit unknown number
16'hz /Il is a 16-bit high-impedance number
8'd-6 /I this is illegal syntax
-8'd6 / this defines the two's complement of 6,
/I held in 8 bits—equivalent to -(8'd 6)
4 'shf /I this denotes the 4-bit number '1111', to

/I be interpreted as a 2's complement number,
/[ or'-1'. This is equivalent to -4'h 1

-4 'sd15 /I this is equivalent to -(-4'd 1), or '0001'

16'sd? // the same as 16'sbz

(
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Strings

* between double quotes ””
« Strings can be assigned to integral types, like arrays
e can be casted

byte mystring[0:12] = "Hello world\n";

=T ] Tampereen yliopisto
Tampere University



.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

General Building Blocks and Structure

This slide set is based on IEEE 1800-2012 ©
standard of SV



Design elements

* Primary building blocks and containers for declarations
and code

* module, program, interface, checker,
package, primitive, config

* We will only cover module for now
 interface and package in detail later on this lecture

(
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Module

* Module is the basic block, contains (verification / RTL)
code and interconnections between verification and design

blocks
— It is the place in which you would describe your RTL

module <name> (<ports with directions>);
// content blocks and declarations
endmodule
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Hierarchy

* Hierarchical design can be implemented by
instatiating modules inside each other

<name> <inst_name> (
<port>(<connect to>),
<port>(<connect to>)
) ;
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Hierarchy example

module top; // no ports in this module
// signal declarations
logic a,b,sel; // logic is the variable datatype
wire vy; // wire declares a net

// component instantiation
mux mymux(.a(a), .b(b), .sel(sel), .vy(y):;

endmodule

// component declaration: input and output ports

module mux (input wire a,b,sel, output logic vy);
y = sel ? a : b;

endmodule

(
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Starting a DFF module

module dff (
input clk,

input d,
output g
) ;

endmodule

(
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// Clock input
input rst n, // Reset input

// D input
// Q output

What would we
need to define in
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Data types and data objects

« Data type defines a type of data value that can be
manipulated with operations given for that data type
— logic, wire, bit, byte, 1integer, time...

« Data object is a named entity/item of a data value with
given data type



Variables

*0 — logic zero or false condition
*1 —logic 1 or true condition
*X — unknown logic value
« Name: logic -z — high impedance state
— (old) verilog syntax: reg

 Basic data variable

» Recognize reg, use logic in your own code
« 4-state type
« Cannot have multiple drivers, no drive strength information

« Also (4-state) integer, (2-state) bit, byte, int ..., (float) real and
more
(
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Nets

« Don't store data, but only represent connections

« Name: wire
« 4-state type

 also uwire, tri, trireg, there’s more, but wire is the most
common

(
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DFF with data types

module dff (
input wire clk, // Clock input
input wire rst n, // Reset input

input wire d, // D input
output logic g // Q output
) ;
endmodule

(
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Packed arrays

« Usual data types are by default treated as 1-bit wide scalars

« packed arrays can be used to define multibit vectors
wire [15:0] busa; // a 1l6-bit bus

// a 4-bit packed array made up of (from most to
// least significant) v[3], v[2], v[1l], and v[O0]
logic [3:0] v;

// a 4-bit packed array in range -8 to 7
logic signed [3:0] signed reg;

logic [-1:4] b; // a 6-bit packed array

// declares three 5-bit variables

‘ logic [4:0] x, vy, z;

= Tampereen yliopisto
Tampere University



Arrays

« packed array, when dimensions are before the identifying name
— also referred to as vector
— guaranteed continuous stream of bits in memory
— can be made only of single bit data types!
— can have unsigned/signed, eg. 48bit arithmetics are possible

« unpacked array, when dimensions are after the identifying name
— can be made of any data type

« multidimensional arrays are supported
(
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Arrays

bit [31:0] array; // Packed
int addr [32]; // Unpacked
// or

int addr [31:0];

byte b = array[15:8];
array[31:0] = addr[5];

// 10 elements of 4 8-bit bytes
// (each element packed into 32 bits)
bit [3:0] [7:0] joe [1:10];

(
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Constants and parameters

(

constants are named data objects that do not change over the elaboration
time or run-time

— elaboration time constants: parameter, localparam, specparam

— run-time constants: const

parameter can be overridden in instantion of module, interface or program
— For example, you can create a bus interface that by default is 8 bits wide
— Then, you can instantiate 16 bits wide bus by overriding the width parameter

Parameters can depend on other parameters!
Parameters can have type and range!
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Parameter example

interface my bus # (parameter width = 8);
logic [width-1:0] bus;
endinterface: my bus

module top;
localparam BUS WIDTH = 16;
// assignment by name
my bus # ((.width (BUS WIDTH))) busl6

// or assignment by order:
my bus #((BUS WIDTH)) busl6 by order

endmodule
(
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DFF with parameterized arrays

module dff #(parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data_width g-1:0] d, // D input
output logic [data_width g-1:0] g // Q output

) ;

How to define
functionality?

endmodule

(
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FURTHER READING

(
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What’s the deal with those wire’s
and reg’s in Verilog?


https://blogs.sw.siemens.com/verificationhorizons/2013/05/03/wire-vs-reg/
https://blogs.sw.siemens.com/verificationhorizons/2013/05/03/wire-vs-reg/

Integers

shortint
int
longint
byte

bit
logic
reg
integer
time

2-state, 16 bit signed
-"- 32bit signed

-"- 64Dbit signed

2 state, 8-bit signed

2 state, user defined

4 state, user defined

4 state, user defined

4 state, 32bit signed

4 state, 64 bit unsigned

* User defined default to unsigned, can be set signed
« Signed ones can be set unsigned

(
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Other types

« data type void can be used to present "no value” e.g. in function
returns

« string is a data type (do not confuse to string literals) that has
traditional C++ like string features

— one character is type of byte
— no truncation like in assigning string literal to a vector of bytes
— built in manipulation functions

(
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Other types

« event type is for communication and synchronization between
concurrent processes

« user can define own types with typedef

« enum allows to enumerate data type content
— anonymous enums are allowed too

— be careful with variable types, remember that 2 state cannot have x/z
states

// state is the name of variable
enum bit [1:0] {IDLE=2'b00, S0=2"b01,
S1=2"bl0, S2=2'"bll} state;

(
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Scope and lifetime

« Variables outside desing elements have scope of the file
(compilation unit) and lifetime of whole simulation (static)

« Variables inside module, interface, program or checker are
local to that and have static lifetime

e Variables inside task, function or block are local and static
by default

— with automatic the variable has lifetime of a call
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Casting

« Data types can be casted with’

 There are limitations what can be casted to what
— not as elaborate as C for example

« Sign can be casted with signed’() and unsigned’()
« $cast built in function allows dynamic casting

type’ (expression)
int a = int’ (2.0*5.0);

(
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Aggregation

(

struct can be used to collect data types under one name

— by default structures are unpacked
read: can contain any data types

struct packed allow accesing a bit vector with split names
— all the data types are in following memory addresses

union packs different datatypes over each other
— one can access same place or subset of it through different names
— can have mismatched size

union packed
— cannot have mismatched member sizes

union tagged is type checked union
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Aggregation

typdef struct {
bit [7:0] code;
bit [31:0] addr;
} instr t;
instr t instr;
instr.code = 0;

typdef union ({

bit [31:0] code;
bit [31:0] addr;
}oex u;

(
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struct packed signed{
int a;
byte b;

} pack;

// byte Db
pack[7:0]

(1st goes MSB)



Dynamic arrays

« (Can contain any data type
— created with []
— construct with new([], get size with size(), delete() to clear

// Dynamic array of 4-bit vectors
bit [3:0] nibble[];

// Fixed-size unpacked array composed
// of 2 dynamic subarrays of integers
integer mem|[2] [];

// arr2 sized to length 4; dynamic subarrays
// remain unsized and uninitialized
int arr?2 []J[] = new [4]; arr2.size;

(
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Array manipulation

 |ots of methods and ways in addition to basic slicing and
assignment

* e.g. find(), shuffle(), sort()

« sum(), and(), or(), xor()



Queue

« Dynamic collection of homogenous elements, kept in
order

— constant time acces and insert/delete first/last

« access first element with 0 and last element with $
« same manipulation as for arrays

« create as unpacked array but use $ as the size

bit myqueue[$];
integer Q[$:8] = {1,2,3}; // 8 max size

(
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Queue methods

 size(), insert(idx, element), delete(idx),
* element pop_front(), element pop_back(),
« push_front(element), push back(element)
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ASSIGNMENTS

(
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Assignments

« Two ways to assign values

* continuous assignments

— assign to nets or variables
— similar to gate driving nets
— right-side is combinational logic that drives the net continuously

« procedural assignments
— assign only to variables

(
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Continuous assignment

Driven continuously into variables and nets

— that is, when something changes on the right side, it is assigned
immediately (if no delays included) to that variable/net

assignment can be done in the declaration or later
« Later: keyword assign

nets can be continuosly assigned by multiple assignments
* Multiple drivers

variables can be continously assigned only once
« Single driver

(
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Continuous assignment example

// net declaration with continuous assignment

wire mynet = enable;
// or

wire mynet;

assign mynet = enable;

(
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Procedural assignments

* Procedural assignments happen inside procedures
— always, initial, task, function, covered later

e "triggered” assignments, happen when the assignment is
reached
— Compare: continuous assignment holds through the simulation

(
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Blocking procedural assignments

» target = evaluated statement;

« The assignment must go through before the execution
moves to the next statement

— Assignments processed sequentially



Non-blocking procedural assignments

» target <= evaluated statement;

* The assignments are scheduled at the end of the timestep

— Assignments processed in parallel



Blocking and non-blocking

// blocking assignment
initial begin

a = 1; // a will be assigned 1 immediately

b=4#2 0; // b =0 at time 2, execution BLOCKED until!
#10 1; // ¢ = 1 at time 12!

C
end

// non-blocking assignment

initial begin
d <= #10 1; // d will be assigned 1 at time 10
e <= #2 0; // e will be assigned 0 at time 2

end

// swap, at the end of time unit, a = 1 and b = 0
initial begin
a = 0;
= 1;
<= Db;
<= a;

oo o

( end
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Assignment summary

« Continuous:
— assign primitive
— In declaration
* Procedural
— Blocking: =
— Non-blocking: <=

(
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DFF with continuous assignment?

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

Just a direct
connection!

assign—q=4d;

endmodule

Not what we
want.

(
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Assignment extension and truncation

 the left side rules

* when right side has fewer bits, it is padded
— unsigned -> padded according to the statement
— signed -> padded with sign extension

* when left side has fewer bits, truncation is made
— truncation of signed may lose sign

* Be careful, and try to avoid!

(
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Extension and truncation example

logic [7:0] datay;
logic [31:0] addr = "hDEADBEEF;
logic addr2 = "bO0;

What will
happen on

data <= 0; these lines?

data <= addr;

addr <= addrz; Everything’s |
fine? Compiler error?

Not what we
expected?

(
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FURTHER READING

(
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Procedural continous assignment

« with keywords assign and force one can continuosly drive
expression result to a variable (assign for variables, force
for nets)

« deassign will end the assignment to a variable, variable
holds its current value

* release will end force assignment



Assignment patterns

« SV provides way to assign multiple values or
patterns into variables, structures and arrays

- pattern syntax is ’{ patterns };

typedef byte U[3]; typedef struct {real r, th;} C;
var U A = '"{1, 2, 3}; var C x = '{th:PI/2.0, r:1.0};

// same as '{y, vy}
unpackedbits = "{2 {y}} ;

// same as '{'{v,v,V}, "{y,V,V}}
int n[l1:2]1[1:3] =

"{2{"{3{y}}}};
C
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Array concatenation and alias

« concatenation can be used to assign to multiple signals:

wire a,b,c;
wire [2:0] y;

assign {a,b,c} =y; // a =yl[2], b = y[1l], ¢ = y[0]

 alias can be used to have multiple names for same net

module byte swap (inout wire [31:0] A, inout wire [31:0] B);
alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;
endmodule

(
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OPERATORS

(
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Operators in general

* Follow very closely to C/C++
* Quite self explanatory, but few exceptions

« === gnd !== consider x and z states too
« == and != can produce unknown (x), if x or z is involved

« ==7 and =7 the ? treats right side x and z as wildcards



Table 11-1—Operators and data types

Operator token Name Operand data types

= binary assignment operator any

+= -= [f= *= binary arithmetic assignment operators integral, real, shortreal
Vo= binary arithmetic modulus assignment operator | integral

&= |= "= binary bit-wise assignment operators integral

= <<= binary logical shift assignment operators integral

Prr= <= binary arithmetic shift assignment operators integral

?: conditional operator any

+ - unary arithmetic operators integral, real, shortreal
! unary logical negation operator integral, real, shortreal
- &A ~& | -~ " unary logical reduction operators integral

+ - *®f Ekk binary arithmetic operators integral, real, shortreal
% binary arithmetic modulus operator integral

O binary bit-wise operators integral

(
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(
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>> << binary logical shift operators integral

P2> binary arithmetic shift operators integral

&& || binary logical operators integral, real. shortreal

> <>

< €= > == binary relational operators integral, real, shortreal

=== l== binary case equality operators any except real and
shortreal

== I= binary logical equality operators any

==? 1=7 binary wildcard equality operators integral

++ - unary increment, decrement operators integral, real, shortreal

inside binary set membership operator singular for the left operand

dist? binary distribution operator integral

{t {{}} concatenation, replication operators integral

{=<{}} {=={}} stream operators integral




FURTHER READING

(
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Operators in general

- shifting with >> and << is logical or zero padded

* shifting with >>> and <<<is arithmetic, and
padding is made according to unsigned/signed

* inside tells if left side operand can be found from
right side list



Predecense

* From left to right
« for operators ?: and -> and <-> the association is right to left

* When operator has higher predences, it is evaluated first in left to right
order

 Some operators are short circuit evaluated

— if the result can be determined without evaluating all operators, they may
be skipped

(
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PROCEDURES

(
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Procedures

* As hardware is parallel, SV must have methods for creating
parallel procedures
* initial
« always, always _comb, always_latch, always_ff

« final

(

"] Tampereen yliopisto
Tampere University



Initial, always, final

* [nitial is executed once
« at the start of simulation

« always is executed always, until the simulation ends

 final is executed once
 at the very end of the simulation

(
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Initial

initial procedure is executed only once
 Itis typically used for initialization tasks
* Or to provide the initial stimulus to the simulated part

 Example: does not do much yet

initial inputs = 'b000000; // initialize inputs at time 0

(
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always*

« always procedures are repeated until the simulator ends
— always, always comb, always_lacth, always_ff

* Requires some kind of timing control
— most of the time, you’ll use always with an event/sensitivity list

(
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always

(

general purpose (parallel) procedure

use for repetitive behaviour, e.g. generate clock

with timing/event control can be used for creating combinational,
latched, and sequential HW

 without timing/event control, will deadlock the simulation

always #10 clk = ~clk; // toggle clk every 10 time units
always a = ~a,; // deadlock! consumes all the simulation time
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always comb

« Especially made for modeling combinational logic

— Executed according to inferred sensitivity list that is figured out of
the code/expressions it contains

 Linting tool (etc.) should be used to ensure correct use

always comb a = b & c;

(
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always_latch

« Similar to always comb, but for latched logic

(
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always_ff

« similar to always_latch and always comb, but for
synthesizable sequential logic

« can contain only one event control, and no blocking timing
controls

(
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DFF with always procedure

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

Is this one line all
we need inside
always procedure?

endmodule

Deadlock! How
to prevent it?

(
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FURTHER READING
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final

final is executed once at the simulation end time

it should execute without any delay

if multiple final procedures exist, they are executed in arbitrary order

— simulation tools should however keep this execution in order over different
runs!

calling $finish will trigger the end time for simulation and the call of the
final procedures

(
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BLOCKS

(

"] Tampereen yliopisto
Tampere University



begin-end

sequential block
» procedural statements inside such are executed sequentially

can contain event control (covered later)
any delay values should be relative to each other

Like the {}in C

(

"] Tampereen yliopisto
Tampere University



Initial procedure with begin-end

initial begin

a = 0;
for (int index = 0; index < size; index++)
// initialize memory word
memory[index] = 0;
end

initial begin
// 1initialize at time zero
inputs = 'b00000O0;
// first pattern
#10 inputs = 'b011001;
// second pattern
#10 inputs = 'b011011;
#10 inputs = 'b011000;
#10 inputs = 'b001000;
end

(
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fork-join

« parallel block
» procedural statements inside such are executed concurrently

« execution jumps away from the block when all statements

are executed
e ajoin, join_any, join_none ending the block control this
« join = continue when all spawned processes are completed
« join_any = continue when one spawned process completes
« join_none = continue without waiting any spawned processes to

complete
(
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fork clock example

initial begin
clockl <= 0;
clock2 <= 0;
fork
forever #10 clockl = ~clockl;
#5 forever #10 clock2 = ~clock2;
join none
end

(
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DFF with begin-end block

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

Still does not work!

But possible to do multiple
things sequentally in always

) ;

atways—Efbegin
—ag=4d+

endmodule

(

= Tampereen yliopisto
Tampere University



TIMING CONTROL

(
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Procedural timing control

« Two types, delay control and event expression

A delay control is done with #
An event control is done with @
A wait statement combines event in while loop



delay control #

« Useful for example generate desired waveforms or to
separate stimulus from each other

(

always #10 clk = ~clk; // toggle clock every 10 time units

logic

begin
//
#2
#2
#2
#2

end
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[7:0] r; // r declared as an 8-bit variable

B B B B Q

waveform controlled by sequential delays
= 'h35; // Note: Blocking assignment!

= 'hE2;

= 'h0O0;

= 'hF7;



event control @

» synchronization to a value change in net or a variable, or a
occurence of declared event

« can detect direction of the change
— posedge the value goes towards 1
« 0->x,z,1 or x,z->1
— negedge the value goes towards O
* 1->x,z,0 or x,z->0
— edge the values goes towards 0 or 1

(
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event control @ examples

// controlled by any value change in the reg r
@dr rega = regb;

// controlled by posedge on clock
@ (posedge clock) rega = regb;

// always controlled by negedge on clock
always (@ (negedge clock) rega = regb;

// always controlled by edge on clock
always (@ (edge clock) rega = regb;

(
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DFF with event control

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

) ;

But how to
handle reset?

always ff @(posedge clk or negedge rst n)
begin

q <= d;
end

endmodule

(
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FURTHER READING

(
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events in fork join

real AOR[]; // dynamic array of reals
byte stream[$]; // queue of bytes

// waits for array to be allocated
initial wait (AOR.size () > 0) ....;

// walits for total number of bits

// 1in stream greater than 60

initial wait(Sbits(stream) > 60)...;

Packet p = new; // Packet 1 -- Packet is defined in 8.2
Packet g = new; // Packet 2
initial fork
@(p.status); // Wait for status in Packet 1 to change
@p; // Wait for a change to handle p
# 10 p = g; // triggers @p.
// @(p.status) now waits for status in Packet 2 to change,
// 1f not already different from Packet 1
join

(
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Event or -operator

* multiple events can be waited with or

e also comma (,) can be used for the very same
behaviour

always (@ (a,b,c);
// 1s same as

always (@ (a or b or c);

(
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@*
« with @™ all the variables will be in the event list
— e.g. one of the variable changes -> event fires

 if the need is as sensitivity list in the beginning of
always block for combinational logic, use
always comb instead

// equivalent to @(a or b or ¢ or d or tmpl or tmp2)
always (@* begin

tmpl = a & b;

tmp2 = ¢ & d;

y = tmpl | tmp2Z;
end

(
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conditional events - iff

 if the expression after iff is true, the event can
happen

* the expression is evaluated when the event
happens!

 iff has precedence over or... or use parentheses

module latch (output logic [31:0] vy, input [31:0] a, input

enable) ;

always (@ (a iff enable == 1)

y <= a; //latch is in transparent mode
endmodule

(
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sequence events ##1

e a sequence is waited until the event is considered

occured
— see sequence syntax in 16.7

sequence abc;
@ (posedge clk) a ##1 b ##1 c;

endsequence

program test;
initial begin
@ abc $display( "Saw a-b-c" );
Ll : ...
end
endprogram

(
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wait or level sensitive

« wait waits until the statement experssion evaluates
and executed following statement with no delay

it implements level sensitive event control

— that is, if the statement evaluates true when reached, it
will pass, not wait for next edge

begin
wait (!enable) #10 a = Db;
#10 ¢ = d;

end

(
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level sensitive sequence control

* sequences have a built in triggered method that
returns true if the sequence has happened

* this can be used with wait statement to level
sensitive control

sequence abc;
@ (posedge clk) a ##1 b ##1 c;
endsequence

wait ( abc.triggered );



repeat

« with repeat one can wait that the event occurs
given times until proceeding

// will execute event expression three times
repeat (3) @ (event expression)

(
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intra-assignment

« one can delay assignment with so called intra-assignment
delay and event control

* insert delay/event control between the assignment

« useful to fix race conditions in fork-join, assign both
variables, add delay, delay ensures that both will be
assigned correctly

// same as temp = b; #5 a = temp; // race free
a = #5 b; fork

a = #5 b;
// wait 5 clk cycles until the data is b = #5 a;
assgined to a, notice that data can change join
during this, but the old value is assigned
a <= repeat(5) ((posedge clk) = data;

(
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Process and process control

« Just for curiosity, see 9.6 for precise info

« wait fork blocks until the child subprocesses have
completed

» disable stops a task before it reaches end, it can also
terminate a named block
— can be used to get goto —like structure

* built in class process is given, has own class methods,
cannot be extended, cannot be constructed (instead use
process::self() method)
— a bit unclear how this is actually beneficial..
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Semaphores

 Builtin class for key bucket synchronization

* Process reserves key(s), process cannot continue until it gets
key(s)

« The initial key amount is given in constructor new(int keyCount
=0), defaultis O

« processes can put keys in the bucket with put(keyCount=1)

« processes can take keys with get(keyCount=1), if not enough
keys available, the call will block until enough keys are returned

* process can non-blockingly try to get keys with int

try _get(keyCount=1), return value is O if no keys were available
(
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mailboxes

 built in class for exchanging messages between processes

 receiver can check mailbox for new messages
— wait if there is no mail
— or proceed

» The mailbox can be bound or unbounded
— bound has a limit, sender may be blocked until receiver empties box
— unbound has unlimited room

« By default, accepts any type as message and one mailbox can
contain several types
— a mailbox can be parametrized to accept only one type

(
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mailboxes

* mailbox or parametrized mailbox #(type)
« constructor new(bound=0)

« send message put(msg) (blocking) or int try_put(msg) (non-
blocking)

« receiver message get(ref msg) or peek(ref msg)
— the difference is that peek() does not remove the message from the
mailbox
 try to receive without blocking try_get(ref msg), try peek(ref
msgQ)

« get number of messages with int num()
(
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event ¢;

Named event o
* One can create named events that can be wait for with wait() or @
* event name;
« Event has name.triggered that tells if the event has occured

— can be used with wait(name.triggered)
« Event can be dispatched with operator ->
« Events can be wait in order with wait_order(event1, event2,..)

— events must occur in the given order, othewise a runtime error is
produced

« Events can be compared

(
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CONTROL STRUCTURES

(
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Conditional if - else

* as in many languages, else part is optional

* no need for separating the body, but begin-end block may
be used (and recommended)

if (x> 0) if (x> 0 ) i £ > 0
y = 0; begin 1t ( X__ _)
else y = 0; y = 0;
-1 B else if ( x < 0 )
y = z =Y _ 1.
end y =
else
y =1

(
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case statement

 similar to C/C++
e can handle x and z

. logic [1:0] data;
logic [15:0] data;

case (data)

case (data) 2'b0x,2'"b00: x =
167d0: x = 0; 0
16;d1i X =_1; 2'b10: x = 1;
default x = 0; default x = 0;
endcase

endcase

(
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loops

* six different ways to loop
« forever, repeat(), while(), for(;;), do while(), foreach()
« quite similar to other languages



forever

« forever loops forever
« good for generating clocks
 remember to avoid zero delay hang

initial begin
clockl <= 0;
clock?2 <= 0;

fork
forever #10 clockl = ~clockl;
#5 forever #10 clock2 = ~clock2;
join
( end
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repeat

* repeats the body as many times as given parameter

// prints three steps
repeat (3) begin

Sdisplay (“step ”);
end

(
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DFF with control structures

module dff # (parameter data width g =
(
input wire clk,
input wire rst n,
input wire [data width g-1:0] d,
output logic [data width g-1:0] g
) ;
always ff @ (posedge clk or negedge
begin
if (~ rst_n) begin

q <= 0;
end
else begin
q <= d;
end
end
endmodule

(
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8)

// Clock input
// Reset input
// D input

// Q output

rst n)

Ready!

How many of these
begins and end do
we absolutely need?




FURTHER READING

(
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unique-if

(

unique if
— make a violation report, if there is no matching condition within the if-block
— Ensures that there is no overlap in if-else-if’s (so it can be done parallel)
unique0 if

— reverse of unique, no violation if no matches, but ensures that there is no
overlap

priority

— same as unique but allows multiple matches for one variable while requires
that the given if-else-if conditions are evaluated in order

unique if ((a==0) || (a==1)) $display ("0 or 1");
else if (a == 2) Sdisplay("2");
else if (a == 4) S$display("4"); // values 3,5,6,7 cause a

violation report
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case with do not cares

« casez handles z's as do not cares
— use ? in place of z's in case statements

« casex handles x’s as do not cares
— use X in place of x’s in case statements

logic [7:0] 1ir;

casez (ir)
8'b1l7??27??27??27?: instructionl (
8'b01?2?27??2?2?2: instruction?2 (
8'b0001?272?27?: instruction3(
8'b000001??: instructiond (
endcase

ir
ir
ir
ir

) 7
) ;
).
)

(
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case statement with unique

* the same unique, unique0 and priority can be used for
case as for if
— that is to check that at least one of the cases will be covered

— unique and unique0 ensure that no overlap and safe to execute in
parallel

— priority case should match only the first match

(
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for loop

for (int 1 = 0; i <= 255; 1i++)

begin
automatic int i;
for (i = 0, int J = 0; 1 <= 255; 1i++)

end

(
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while and do while

* both loop as long as the expression is true
» while tests the expression in beginning
« do while tests the expression at the end

while (tempreg) begin do
if (tempreg[0]) $display (“looping\n”) ;
count++; #10
tempreg >>= 1; while (true);

end

(
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foreach

« goes through iterable arrays
* can cover over multidimensional arrays too

string words [2] = '{ "hello",
"world" };
int prod [1:8] [1:3];

// print each index and value
foreach( words [ J 1 )
sdisplay( j , words([]J] );

foreach( prod[ k, m ] )

§ prod[k] [m] = 0;

"] Tampereen yliopisto
Tampere University



jumps

« three kind of break, continue, return
« quite self explanatory
* break jumps out of loop, no questions asked

« continue jumps at the end of the loop for another round
(expression is evaluated)

* return jumps out of function, can return a value, must be
correct type
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Subroutines: Tasks and functions

« Tasks and functions are for repeating work
— corresponds to functions in many languages

 Tasks consume time, but cannot return value
— can have delays
— you implement logic inside
— can pass return value through arguments

* Functions do not consume time, but can have return value
— cannot have delays
— non-void one can be operand of expressions

(
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Tasks

« Can have time delays etc. inside
« (Can take arguments

« Control is returned when task is completed

— If a task enables other tasks, all need to complete before returning
task mytaskl (output int x, input logic y);

endtask

task mytask?2;
output x;
input vy;
int x;
logic vy;

( endtask
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Functions

* Functions should not contain anything that consumes time
— #, ##, always

« As atask can consume time, functions should not call any
tasks

* Functions can call other functions
* Functions can suspend processes

« Main use to produce values for evaluating expressions
(
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Function return value

 Function can return a value

— The type can be explicitly defined
— it can be only a range and sign, but logic is defaulted then

* Function can be void without any return value

 The arguments are passed same way than to tasks

(
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Functions

* return value can be given as return or using built in
implicit variable with the same name as the function

function logic [15:0] myfuncl (int x, int y);

myfuncl = x*y; // return value assigned
endfunction

function logic [15:0] myfunc2;
input int x;
input int vy;

return x*y; // return value through return
endfunction

(
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FURTHER READING
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Task arguments

* input — copy value in the beginning
— default
« output — copy value out at the end
* inout — copy value in the beginning and out at the end

« ref — pass value to the task as reference

« data type maybe specified, or inherited, or default to logic



Task execution

« Statements inside task are executed sequentially until
endtask

« task can return at any point

« task is called as it would be “function” by passing desired
values as arguments
— values should meet the declared types

— if argument is output but the calling value is ouput as well, a
compilation error should rise

(
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Argument passing

 Pass by value
— default, the value is copied

« Pass by reference with ref
— does not copy values, only the handle
— especially for large values, structures, arrays

— change to the data will change it outside too
* as no copy is made of the values

— only variable, class property, unpacked structure member, unpacked array
element are legal to pass as by reference

— NO NETS!

(
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Argument passing

(

Arguments can have default value with = operator
Arguments can be bind by the name

if function/task takes no arguments, () are optional

function int fun( int j = 1, string s = "no" );
endfunction

fun( 2, "yes”);

fun( .3(2), .s("yes”));

fun(.s(”yes”)); // 1 gets default value

fun( , ”yes”); // 1 gets default value
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Packages

* package...endpackage provides method to capsulate
namespaces

« package is imported to design instead of “include

— including a file is simple text replace, which may cause
compilation errors due to overlapping names or produce cryptic
dependencies

— Import gives visibility to the package

e accessing package is done through :: operator

(
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Packages

package p;

typedef enum { FALSE, TRUE } bool t;
endpackage
package g;

typedef enum { ORIGINAL, FALSE } teeth t;
endpackage

module topl ;
import p::*;
import g::teeth t;

teeth t myteeth;

initial begin
myteeth = g:: FALSE; // OK
myteeth = FALSE; // ERROR: Direct reference to FALSE refers to the

end // FALSE enumeration literal imported from p
endmodule

(
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Interface

* Encapsulates communication between design blocks

|t capsulates several wires / ports inside one item that can be
passed between blocks

« Can have other elements, parameters, constants,

(

variables, functions, and tasks

— If two modules are connected through the interface item, the
communication may be just a subroutine call of the interface

interface <name> (<port etc. declarations>);
endinterface
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Interface example

interface iZ2c (input logic clock);
logic sda, scl;
endinterface: i2c

module masterDev (i2c bus);
always (@ (posedge clock) bus.scl <= ~bus.scl;
endmodule

module slaveDev (i2c bus);
endmodule

module top;
logic clk = 0;
i2¢c i2c intf(.clock(clk));
// connect master&slave to same interface
masterDev (.bus (12c intf));
slaveDev (.bus (i2c intf));

endmodule

(
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modport

* modport declares the direction of the logic
connections within an interface

interface spi;
wire clk, c¢s, mosi, miso;
modport master (input miso, output clk, cs, mosi);
modport slave (output miso, input clk, cs, mosi);
endinterface

module m(spi 1i);
endmodule

spl spi intf();
m(.1(spi intf.master));

(
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Simulation time and precision

«  With SystemVerilog you can do functional simulation with timing
incorporated

— timeunit is the measurement unit, s, ms, us, ns, ps, fs
— timeprecision is the degree of accuracy for delays
— or "timescale <time unit>/ <time precision>

 Effective as "if no timeunit/precision given” up until another “timescale is
encountered

 Global time unit is the simulation time unit that is the smallest of the
given time units (same for precision)

— also referred as step
(
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Compilation and Elaboration

Compilation checks the code syntax and semantic errors

Elaboration binds the design components together before
the simulation

Typically "compilation” == compilation+elaboration

Namespaces can cause trouble in compilation
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FURTHER READING
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Packages

» http://blogs.mentor.com/verificationhorizons/blog/2
010/07/13/package-import-versus-include/



http://blogs.mentor.com/verificationhorizons/blog/2010/07/13/package-import-versus-include/
http://blogs.mentor.com/verificationhorizons/blog/2010/07/13/package-import-versus-include/

21. 1/0 System tasks

* Very similar to C/C++

 fd = $fopen(filename, type);

« Sfdisplay(fd, "text”);

« ¢ = $fgetc(fd);

- ret = $fgets ( str, fd ); // read line

 logic [7:0] mem[1:256]; $readmemh("mem.data", mem); //
read file of hexadecimals to array



(
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Simulation control tasks (20.2)

$finish
Sexit

Sstop

Simulation time functions (20.3)

Srealtime Sstime
Stime

Timescale tasks (20.4)

Sprinttimescale Stimeformat

Conversion functions (20.5)

S$bitstoreal S$realtobits
Sbitstoshortreal Sshortrealtobits
Sitor S$rtoi

Ssigned Sunsigned
Scast

Data query functions (20.6)

S$bits Sisunbounded

Stypename
Array query functions (20.7)

Sunpacked _dimensions Sdimensions
Sleft Sright
Slow Shigh
Sincrement S$size
Math functions (20.8)

Sclog2 Sasin
Sln Sacos
Sloglo Satan
Sexp Satan2
Ssqrt Shypot
Spow $sinh
S$floor Scosh
Sceil Stanh
S$sin Sasinh
Scos Sacosh
Stan Satanh
Severity tasks (20.9)

Sfatal Serror
Swarning Sinfo
Elaboration tasks (20.10)

Sfatal Serror
Swarning Sinfo

Assertion control tasks (20.11)

$asserton Sassertoff
Sassertkill

Assertion action control tasks (20.12)
$assertpasson SassertpassofT
Sassertfailon Sassertfailoff
$assertnonvacuouson

Sassertvacuousoff

Assertion functions (20.13)

Sonehot $onehot0

Sisunknown $sampled

Srose Sfell

S$stable Schanged

Spast Scountones ]
Spast_gclk Srose_gclk

Sfell_gclk S$stable_gelk

Schanged gclk Sfuture_gelk

Srising_gclk S$falling_gclk

$steady gelk Schanging_gclk

utility
system

tasks

Coverage control functions (20.14)

Scoverage control
Scoverage get
Scoverage_save Sget_coverage
$set_coverage_db_name Sload_coverage_db

Probabilistic distribution functions (20.15)

Srandom
Sdist_erlang
$dist_normal

Scoverage_get max
Scoverage_merge

Sdist_chi_square
$dist_exponential
$dist_poisson

Sdist_t $dist_uniform
Stochastic analysis tasks and functions (20.16)
$q_initialize $q_add

$q_remove $q_full

$q_exam

PLA modeling tasks (20.17)

SasyncSandSarray SasyncSandSplane
SasyncSnandSarray SasyncSnandSplane
SasyncSorSarray $asyncSorSplane
SasyncSnorSarray SasyncSnorSplane
$sync$andSarray $sync$andSplane
$sync$nandSarray $sync$nandSplane
$sync$orSarray $sync$or$plane
$sync$norSarray $sync$nor$plane

Miscellaneous tasks and functions (20.18)

$system



Display tasks (21.2) Memory load tasks (21.4)

Sdisplay Swrite Sreadmemb Sreadmemh
$displayb $writeb
ig!sp}ayh iwrg;eh Memory dump tasks (21.5)

isplayo writeo
$'s.trcl)3b-ey $monitor Swritememb Swritememh
$strobeb $monitorb
$strobeh $monitorh Command line input (21.6)
$strobeo $monitoro

$monitoroff Stest$plusargs SvalueSplusargs
$monitoron
VCD tasks (21.7)
File I/O tasks and functions (21.3) $dumpfile $dumpvars
$dumpoff $dumpon

i;;]_osle igjpin Sdumpall Sdumplimit
$fd!splayb $fww§teb Sdumpflush Sdumpports
S d!SPlayh $fy !rf teh Sdumpportsoff $dumpportson

1spray vnte Sdumpportsall $dumpportslimit
$fdisplayo $fwriteo Sdumpportsflush
S$fstrobe Sfmonitor PP
S$fstrobeb Sfmonitorb
S$fstrobeh $fmonitorh
S$fstrobeo $fmonitoro
Sswrite $sformat
s 214 110 System
$swriteh $fgetc
$swriteo Sungetc
S$fscanf $fgets
S$fread $sscanf t a s ks
Sfseek $Srewind
$fflush Sftell
$feof Sferror

(
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22. compiler directives

- rrim_ 22.13] L
o 2 ¢ similar to C/C++
“begin keywords [22.14] ] i

“celldefine [22.10] °

e e notice timescale,
“define 22.5.1

o default_nettype,
“elsif [22.6]

“end keywords [22.14]

“endcelldefine [22.10]

“endif [22.6]

“ifdef [22.6]

“ifndef [22.6]

“include [22.4]

“line [22.12]

“nounconnected drive[22.9]

“pragma [22.11]

“resetall [22.3]

“timescale [22.7]

“unconnected drive [22.9]

“undef [22.5.2]

“undefineall [22.5.3]

(
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