.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

This slide set is based on IEEE 1800-2012 ©
standard of SV

Objective

« Learn basic concepts of SystemVerilog in verification point of view
— Most of the SystemVerilog concepts are for verification

 Lots of slides and information, not low-level details

— To become professional with SV, one must read the standard, explore
and test, and read the standard more

* Not all tools (compilers, simulators) are supporting all the aspects
— Tool manuals need to be read too

(

7] Tampereen yliopisto
Tampere University

Things left out

« Detailed information about how the language is processed
In the simulator, eg. scheduling

— this might be vital information when you really dig into SV, as there
are all kinds of possibilities provided

* Most of the SystemVerilog standard:

— Use this slide set only as quick start guide, refer to the standard for
usage

(' 7] Tampereen yliopisto
Tampere University

SystemVerilog

« SystemVerilog is extended and improved Verilog to meet better
requirements in HW verification

— Originally an extension to Verilog, but merged to one language

« Originally developed by Accellera, then later standardized by IEEE
— Currently IEEE standard 1800-2017

« Extends Verilog-2005

— SV is Verilog —compatible (as C++ is C compatible), but SV allows RTL
descriptions that would not work on Verilog compilers

(

"] Tampereen yliopisto
Tampere University

SystemVerilog

 Oiriginally an object-oriented programming extension to
Verilog
— The "system” part
— Purposefully designed to improve verification tasks

— “de-facto” assertion language

* OOP allows building testbenches and other useful tools to
help designing, implementing, testing, and verifying

(. — OOP brings abstraction and reuse

"] Tampereen yliopisto
Tampere Universi

About this lecture

« Before diving into the object-oriented properties, this
lecture explains the basic concepts in SystemVerilog

* Most concepts are common to design and verification

« Large number of slides, half of them covered on the lecture

— All slides shared for self-study

.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

General Conventions

This slide set is based on IEEE 1800-2012 ©
standard of SV

Comments etc.

« A commentline starts with //
« A comment block starts with /* and ends with */

« something starting with $ is a system task/function
— in addition to built in, you can create your own!

« Compiler directives start with * like “define (in Finnish qwerty, shift+")

(

7] Tampereen yliopisto
Tampere University

Number literals

659 /Il is a decimal number
'h 837FF /Il is a hexadecimal number
'07460 /Il is an octal number
4af /'is illegal (hexadecimal format requires 'h)
4'p1001 I is a 4-bit binary number
5D 3 /Il is a 5-bit decimal number (bases are not case sensitive)
3'b01x /I is a 3-bit number with the least significant bit unknown
12'hx /l'is a 12-bit unknown number
16'hz /Il is a 16-bit high-impedance number
8'd-6 /I this is illegal syntax
-8'd6 / this defines the two's complement of 6,
/I held in 8 bits—equivalent to -(8'd 6)
4 'shf /I this denotes the 4-bit number '1111', to

/I be interpreted as a 2's complement number,
/[or'-1'. This is equivalent to -4'h 1

-4 'sd15 /I this is equivalent to -(-4'd 1), or '0001'

16'sd? // the same as 16'sbz

(

= Tampereen yliopisto
Tampere University

Strings

* between double quotes ””
« Strings can be assigned to integral types, like arrays
e can be casted

byte mystring[0:12] = "Hello world\n";

=T] Tampereen yliopisto
Tampere University

.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

General Building Blocks and Structure

This slide set is based on IEEE 1800-2012 ©
standard of SV

Design elements

* Primary building blocks and containers for declarations
and code

* module, program, interface, checker,
package, primitive, config

* We will only cover module for now
 interface and package in detail later on this lecture

(

7] Tampereen yliopisto
Tampere University

Module

* Module is the basic block, contains (verification / RTL)
code and interconnections between verification and design

blocks
— It is the place in which you would describe your RTL

module <name> (<ports with directions>);
// content blocks and declarations
endmodule

=T] Tampereen yliopisto
Tampere University

Hierarchy

* Hierarchical design can be implemented by
instatiating modules inside each other

<name> <inst_name> (
<port>(<connect to>),
<port>(<connect to>)
) ;

=T] Tampereen yliopisto
Tampere University

Hierarchy example

module top; // no ports in this module
// signal declarations
logic a,b,sel; // logic is the variable datatype
wire vy; // wire declares a net

// component instantiation
mux mymux(.a(a), .b(b), .sel(sel), .vy(y):;

endmodule

// component declaration: input and output ports

module mux (input wire a,b,sel, output logic vy);
y = sel ? a : b;

endmodule

(

= Tampereen yliopisto
Tampere University

Starting a DFF module

module dff (
input clk,

input d,
output g
) ;

endmodule

(

= Tampereen yliopisto
Tampere University

// Clock input
input rst n, // Reset input

// D input
// Q output

What would we
need to define in

.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

Data Types

Data types and data objects

« Data type defines a type of data value that can be
manipulated with operations given for that data type
— logic, wire, bit, byte, 1integer, time...

« Data object is a named entity/item of a data value with
given data type

Variables

*0 — logic zero or false condition
*1 —logic 1 or true condition
*X — unknown logic value
« Name: logic -z — high impedance state
— (old) verilog syntax: reg

 Basic data variable

» Recognize reg, use logic in your own code
« 4-state type
« Cannot have multiple drivers, no drive strength information

« Also (4-state) integer, (2-state) bit, byte, int ..., (float) real and
more
(

"] Tampereen yliopisto
Tampere University

Nets

« Don't store data, but only represent connections

« Name: wire
« 4-state type

 also uwire, tri, trireg, there’s more, but wire is the most
common

(

"] Tampereen yliopisto
Tampere University

DFF with data types

module dff (
input wire clk, // Clock input
input wire rst n, // Reset input

input wire d, // D input
output logic g // Q output
) ;
endmodule

(

= Tampereen yliopisto
Tampere University

Could we make
it wider than 1-

bit?

Packed arrays

« Usual data types are by default treated as 1-bit wide scalars

« packed arrays can be used to define multibit vectors
wire [15:0] busa; // a 1l6-bit bus

// a 4-bit packed array made up of (from most to
// least significant) v[3], v[2], v[1l], and v[O0]
logic [3:0] v;

// a 4-bit packed array in range -8 to 7
logic signed [3:0] signed reg;

logic [-1:4] b; // a 6-bit packed array

// declares three 5-bit variables

‘ logic [4:0] x, vy, z;

= Tampereen yliopisto
Tampere University

Arrays

« packed array, when dimensions are before the identifying name
— also referred to as vector
— guaranteed continuous stream of bits in memory
— can be made only of single bit data types!
— can have unsigned/signed, eg. 48bit arithmetics are possible

« unpacked array, when dimensions are after the identifying name
— can be made of any data type

« multidimensional arrays are supported
(

"] Tampereen yliopisto
Tampere University

Arrays

bit [31:0] array; // Packed
int addr [32]; // Unpacked
// or

int addr [31:0];

byte b = array[15:8];
array[31:0] = addr[5];

// 10 elements of 4 8-bit bytes
// (each element packed into 32 bits)
bit [3:0] [7:0] joe [1:10];

(

= Tampereen yliopisto
Tampere University

Constants and parameters

(

constants are named data objects that do not change over the elaboration
time or run-time

— elaboration time constants: parameter, localparam, specparam

— run-time constants: const

parameter can be overridden in instantion of module, interface or program
— For example, you can create a bus interface that by default is 8 bits wide
— Then, you can instantiate 16 bits wide bus by overriding the width parameter

Parameters can depend on other parameters!
Parameters can have type and range!

= Tampereen yliopisto
Tampere University

Parameter example

interface my bus # (parameter width = 8);
logic [width-1:0] bus;
endinterface: my bus

module top;
localparam BUS WIDTH = 16;
// assignment by name
my bus # ((.width (BUS WIDTH))) busl6

// or assignment by order:
my bus #((BUS WIDTH)) busl6 by order

endmodule
(

= Tampereen yliopisto
Tampere University

DFF with parameterized arrays

module dff #(parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data_width g-1:0] d, // D input
output logic [data_width g-1:0] g // Q output

) ;

How to define
functionality?

endmodule

(

= Tampereen yliopisto
Tampere University

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

What’s the deal with those wire’s
and reg’s in Verilog?

https://blogs.sw.siemens.com/verificationhorizons/2013/05/03/wire-vs-reg/
https://blogs.sw.siemens.com/verificationhorizons/2013/05/03/wire-vs-reg/

Integers

shortint
int
longint
byte

bit
logic
reg
integer
time

2-state, 16 bit signed
-"- 32bit signed

-"- 64Dbit signed

2 state, 8-bit signed

2 state, user defined

4 state, user defined

4 state, user defined

4 state, 32bit signed

4 state, 64 bit unsigned

* User defined default to unsigned, can be set signed
« Signed ones can be set unsigned

(

= Tampereen yliopisto
Tampere University

Other types

« data type void can be used to present "no value” e.g. in function
returns

« string is a data type (do not confuse to string literals) that has
traditional C++ like string features

— one character is type of byte
— no truncation like in assigning string literal to a vector of bytes
— built in manipulation functions

(

"] Tampereen yliopisto
Tampere University

Other types

« event type is for communication and synchronization between
concurrent processes

« user can define own types with typedef

« enum allows to enumerate data type content
— anonymous enums are allowed too

— be careful with variable types, remember that 2 state cannot have x/z
states

// state is the name of variable
enum bit [1:0] {IDLE=2'b00, S0=2"b01,
S1=2"bl0, S2=2'"bll} state;

(

= Tampereen yliopisto
Tampere University

Scope and lifetime

« Variables outside desing elements have scope of the file
(compilation unit) and lifetime of whole simulation (static)

« Variables inside module, interface, program or checker are
local to that and have static lifetime

e Variables inside task, function or block are local and static
by default

— with automatic the variable has lifetime of a call

"] Tampereen yliopisto
Tampere University

Casting

« Data types can be casted with’

 There are limitations what can be casted to what
— not as elaborate as C for example

« Sign can be casted with signed’() and unsigned’()
« $cast built in function allows dynamic casting

type’ (expression)
int a = int’ (2.0*5.0);

(

= Tampereen yliopisto
Tampere University

Aggregation

(

struct can be used to collect data types under one name

— by default structures are unpacked
read: can contain any data types

struct packed allow accesing a bit vector with split names
— all the data types are in following memory addresses

union packs different datatypes over each other
— one can access same place or subset of it through different names
— can have mismatched size

union packed
— cannot have mismatched member sizes

union tagged is type checked union

= Tampereen yliopisto
Tampere University

Aggregation

typdef struct {
bit [7:0] code;
bit [31:0] addr;
} instr t;
instr t instr;
instr.code = 0;

typdef union ({

bit [31:0] code;
bit [31:0] addr;
}oex u;

(

= Tampereen yliopisto
Tampere University

struct packed signed{
int a;
byte b;

} pack;

// byte Db
pack[7:0]

(1st goes MSB)

Dynamic arrays

« (Can contain any data type
— created with []
— construct with new([], get size with size(), delete() to clear

// Dynamic array of 4-bit vectors
bit [3:0] nibble[];

// Fixed-size unpacked array composed
// of 2 dynamic subarrays of integers
integer mem|[2] [];

// arr2 sized to length 4; dynamic subarrays
// remain unsized and uninitialized
int arr?2 []J[] = new [4]; arr2.size;

(

= Tampereen yliopisto
Tampere University

Array manipulation

 |ots of methods and ways in addition to basic slicing and
assignment

* e.g. find(), shuffle(), sort()

« sum(), and(), or(), xor()

Queue

« Dynamic collection of homogenous elements, kept in
order

— constant time acces and insert/delete first/last

« access first element with 0 and last element with $
« same manipulation as for arrays

« create as unpacked array but use $ as the size

bit myqueue[$];
integer Q[$:8] = {1,2,3}; // 8 max size

(

= Tampereen yliopisto
Tampere University

Queue methods

 size(), insert(idx, element), delete(idx),
* element pop_front(), element pop_back(),
« push_front(element), push back(element)

.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

Assignments, Operators,
Expressions

ASSIGNMENTS

(

"] Tampereen yliopisto
Tampere University

Assignments

« Two ways to assign values

* continuous assignments

— assign to nets or variables
— similar to gate driving nets
— right-side is combinational logic that drives the net continuously

« procedural assignments
— assign only to variables

(

"] Tampereen yliopisto
Tampere University

Continuous assignment

Driven continuously into variables and nets

— that is, when something changes on the right side, it is assigned
immediately (if no delays included) to that variable/net

assignment can be done in the declaration or later
« Later: keyword assign

nets can be continuosly assigned by multiple assignments
* Multiple drivers

variables can be continously assigned only once
« Single driver

(

"] Tampereen yliopisto
Tampere University

Continuous assignment example

// net declaration with continuous assignment

wire mynet = enable;
// or

wire mynet;

assign mynet = enable;

(

= Tampereen yliopisto
Tampere University

Procedural assignments

* Procedural assignments happen inside procedures
— always, initial, task, function, covered later

e "triggered” assignments, happen when the assignment is
reached
— Compare: continuous assignment holds through the simulation

(

"] Tampereen yliopisto
Tampere University

Blocking procedural assignments

» target = evaluated statement;

« The assignment must go through before the execution
moves to the next statement

— Assignments processed sequentially

Non-blocking procedural assignments

» target <= evaluated statement;

* The assignments are scheduled at the end of the timestep

— Assignments processed in parallel

Blocking and non-blocking

// blocking assignment
initial begin

a = 1; // a will be assigned 1 immediately

b=4#2 0; // b =0 at time 2, execution BLOCKED until!
#10 1; // ¢ = 1 at time 12!

C
end

// non-blocking assignment

initial begin
d <= #10 1; // d will be assigned 1 at time 10
e <= #2 0; // e will be assigned 0 at time 2

end

// swap, at the end of time unit, a = 1 and b = 0
initial begin
a = 0;
= 1;
<= Db;
<= a;

oo o

(end
= Tampereen yliopisto
Tampere University

Assignment summary

« Continuous:
— assign primitive
— In declaration
* Procedural
— Blocking: =
— Non-blocking: <=

(

"] Tampereen yliopisto
Tampere University

DFF with continuous assignment?

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

Just a direct
connection!

assign—q=4d;

endmodule

Not what we
want.

(

= Tampereen yliopisto
Tampere University

Assignment extension and truncation

 the left side rules

* when right side has fewer bits, it is padded
— unsigned -> padded according to the statement
— signed -> padded with sign extension

* when left side has fewer bits, truncation is made
— truncation of signed may lose sign

* Be careful, and try to avoid!

(

"] Tampereen yliopisto
Tampere University

Extension and truncation example

logic [7:0] datay;
logic [31:0] addr = "hDEADBEEF;
logic addr2 = "bO0;

What will
happen on

data <= 0; these lines?

data <= addr;

addr <= addrz; Everything’s |
fine? Compiler error?

Not what we
expected?

(

= Tampereen yliopisto
Tampere University

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

Procedural continous assignment

« with keywords assign and force one can continuosly drive
expression result to a variable (assign for variables, force
for nets)

« deassign will end the assignment to a variable, variable
holds its current value

* release will end force assignment

Assignment patterns

« SV provides way to assign multiple values or
patterns into variables, structures and arrays

- pattern syntax is ’{ patterns };

typedef byte U[3]; typedef struct {real r, th;} C;
var U A = '"{1, 2, 3}; var C x = '{th:PI/2.0, r:1.0};

// same as '{y, vy}
unpackedbits = "{2 {y}} ;

// same as '{'{v,v,V}, "{y,V,V}}
int n[l1:2]1[1:3] =

"{2{"{3{y}}}};
C

= Tampereen yliopisto
Tampere University

Array concatenation and alias

« concatenation can be used to assign to multiple signals:

wire a,b,c;
wire [2:0] y;

assign {a,b,c} =y; // a =yl[2], b = y[1l], ¢ = y[0]

 alias can be used to have multiple names for same net

module byte swap (inout wire [31:0] A, inout wire [31:0] B);
alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;
endmodule

(

"] Tampereen yliopisto
Tampere University

OPERATORS

(

"] Tampereen yliopisto
Tampere University

Operators in general

* Follow very closely to C/C++
* Quite self explanatory, but few exceptions

« === gnd !== consider x and z states too
« == and != can produce unknown (x), if x or z is involved

« ==7 and =7 the ? treats right side x and z as wildcards

Table 11-1—Operators and data types

Operator token Name Operand data types

= binary assignment operator any

+= -= [f= *= binary arithmetic assignment operators integral, real, shortreal
Vo= binary arithmetic modulus assignment operator | integral

&= |= "= binary bit-wise assignment operators integral

= <<= binary logical shift assignment operators integral

Prr= <= binary arithmetic shift assignment operators integral

?: conditional operator any

+ - unary arithmetic operators integral, real, shortreal
! unary logical negation operator integral, real, shortreal
- &A ~& | -~ " unary logical reduction operators integral

+ - *®f Ekk binary arithmetic operators integral, real, shortreal
% binary arithmetic modulus operator integral

O binary bit-wise operators integral

(

= Tampereen yliopisto
Tampere University

(

= Tampereen yliopisto

Tampere University

>> << binary logical shift operators integral

P2> binary arithmetic shift operators integral

&& || binary logical operators integral, real. shortreal

> <>

< €= > == binary relational operators integral, real, shortreal

=== l== binary case equality operators any except real and
shortreal

== I= binary logical equality operators any

==? 1=7 binary wildcard equality operators integral

++ - unary increment, decrement operators integral, real, shortreal

inside binary set membership operator singular for the left operand

dist? binary distribution operator integral

{t {{}} concatenation, replication operators integral

{=<{}} {=={}} stream operators integral

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

Operators in general

- shifting with >> and << is logical or zero padded

* shifting with >>> and <<<is arithmetic, and
padding is made according to unsigned/signed

* inside tells if left side operand can be found from
right side list

Predecense

* From left to right
« for operators ?: and -> and <-> the association is right to left

* When operator has higher predences, it is evaluated first in left to right
order

 Some operators are short circuit evaluated

— if the result can be determined without evaluating all operators, they may
be skipped

(

"] Tampereen yliopisto
Tampere University

.

= Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

Processes:
procedures, blocks, timing control

PROCEDURES

(

"] Tampereen yliopisto
Tampere University

Procedures

* As hardware is parallel, SV must have methods for creating
parallel procedures
* initial
« always, always _comb, always_latch, always_ff

« final

(

"] Tampereen yliopisto
Tampere University

Initial, always, final

* [nitial is executed once
« at the start of simulation

« always is executed always, until the simulation ends

 final is executed once
 at the very end of the simulation

(

"] Tampereen yliopisto
Tampere University

Initial

initial procedure is executed only once
 Itis typically used for initialization tasks
* Or to provide the initial stimulus to the simulated part

 Example: does not do much yet

initial inputs = 'b000000; // initialize inputs at time 0

(

"] Tampereen yliopisto
Tampere University

always*

« always procedures are repeated until the simulator ends
— always, always comb, always_lacth, always_ff

* Requires some kind of timing control
— most of the time, you’ll use always with an event/sensitivity list

(

"] Tampereen yliopisto
Tampere University

always

(

general purpose (parallel) procedure

use for repetitive behaviour, e.g. generate clock

with timing/event control can be used for creating combinational,
latched, and sequential HW

 without timing/event control, will deadlock the simulation

always #10 clk = ~clk; // toggle clk every 10 time units
always a = ~a,; // deadlock! consumes all the simulation time

"] Tampereen yliopisto
Tampere University

always comb

« Especially made for modeling combinational logic

— Executed according to inferred sensitivity list that is figured out of
the code/expressions it contains

 Linting tool (etc.) should be used to ensure correct use

always comb a = b & c;

(

"] Tampereen yliopisto
Tampere University

always_latch

« Similar to always comb, but for latched logic

(

"] Tampereen yliopisto
Tampere University

always_ff

« similar to always_latch and always comb, but for
synthesizable sequential logic

« can contain only one event control, and no blocking timing
controls

(

"] Tampereen yliopisto
Tampere University

DFF with always procedure

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

Is this one line all
we need inside
always procedure?

endmodule

Deadlock! How
to prevent it?

(

= Tampereen yliopisto
Tampere University

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

final

final is executed once at the simulation end time

it should execute without any delay

if multiple final procedures exist, they are executed in arbitrary order

— simulation tools should however keep this execution in order over different
runs!

calling $finish will trigger the end time for simulation and the call of the
final procedures

(

= Tampereen yliopisto
Tampere University

BLOCKS

(

"] Tampereen yliopisto
Tampere University

begin-end

sequential block
» procedural statements inside such are executed sequentially

can contain event control (covered later)
any delay values should be relative to each other

Like the {}in C

(

"] Tampereen yliopisto
Tampere University

Initial procedure with begin-end

initial begin

a = 0;
for (int index = 0; index < size; index++)
// initialize memory word
memory[index] = 0;
end

initial begin
// 1initialize at time zero
inputs = 'b00000O0;
// first pattern
#10 inputs = 'b011001;
// second pattern
#10 inputs = 'b011011;
#10 inputs = 'b011000;
#10 inputs = 'b001000;
end

(

= Tampereen yliopisto
Tampere University

fork-join

« parallel block
» procedural statements inside such are executed concurrently

« execution jumps away from the block when all statements

are executed
e ajoin, join_any, join_none ending the block control this
« join = continue when all spawned processes are completed
« join_any = continue when one spawned process completes
« join_none = continue without waiting any spawned processes to

complete
(

"] Tampereen yliopisto
Tampere University

fork clock example

initial begin
clockl <= 0;
clock2 <= 0;
fork
forever #10 clockl = ~clockl;
#5 forever #10 clock2 = ~clock2;
join none
end

(

= Tampereen yliopisto
Tampere University

DFF with begin-end block

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

Still does not work!

But possible to do multiple
things sequentally in always

) ;

atways—Efbegin
—ag=4d+

endmodule

(

= Tampereen yliopisto
Tampere University

TIMING CONTROL

(

= Tampereen yliopisto
Tampere University

Procedural timing control

« Two types, delay control and event expression

A delay control is done with #
An event control is done with @
A wait statement combines event in while loop

delay control #

« Useful for example generate desired waveforms or to
separate stimulus from each other

(

always #10 clk = ~clk; // toggle clock every 10 time units

logic

begin
//
#2
#2
#2
#2

end

"] Tampereen yliopisto
Tampere University

[7:0] r; // r declared as an 8-bit variable

B B B B Q

waveform controlled by sequential delays
= 'h35; // Note: Blocking assignment!

= 'hE2;

= 'h0O0;

= 'hF7;

event control @

» synchronization to a value change in net or a variable, or a
occurence of declared event

« can detect direction of the change
— posedge the value goes towards 1
« 0->x,z,1 or x,z->1
— negedge the value goes towards O
* 1->x,z,0 or x,z->0
— edge the values goes towards 0 or 1

(

"] Tampereen yliopisto
Tampere University

event control @ examples

// controlled by any value change in the reg r
@dr rega = regb;

// controlled by posedge on clock
@ (posedge clock) rega = regb;

// always controlled by negedge on clock
always (@ (negedge clock) rega = regb;

// always controlled by edge on clock
always (@ (edge clock) rega = regb;

(

= Tampereen yliopisto
Tampere University

DFF with event control

module dff # (parameter data width g = 8)

(
input wire clk, // Clock input
input wire rst n, // Reset input
input wire [data width g-1:0] d, // D input
output logic [data width g-1:0] g // Q output

) ;

But how to
handle reset?

always ff @(posedge clk or negedge rst n)
begin

q <= d;
end

endmodule

(

= Tampereen yliopisto
Tampere University

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

events in fork join

real AOR[]; // dynamic array of reals
byte stream[$]; // queue of bytes

// waits for array to be allocated
initial wait (AOR.size () > 0);

// walits for total number of bits

// 1in stream greater than 60

initial wait(Sbits(stream) > 60)...;

Packet p = new; // Packet 1 -- Packet is defined in 8.2
Packet g = new; // Packet 2
initial fork
@(p.status); // Wait for status in Packet 1 to change
@p; // Wait for a change to handle p
10 p = g; // triggers @p.
// @(p.status) now waits for status in Packet 2 to change,
// 1f not already different from Packet 1
join

(

= Tampereen yliopisto
Tampere University

Event or -operator

* multiple events can be waited with or

e also comma (,) can be used for the very same
behaviour

always (@ (a,b,c);
// 1s same as

always (@ (a or b or c);

(

"] Tampereen yliopisto
Tampere University

@*
« with @™ all the variables will be in the event list
— e.g. one of the variable changes -> event fires

 if the need is as sensitivity list in the beginning of
always block for combinational logic, use
always comb instead

// equivalent to @(a or b or ¢ or d or tmpl or tmp2)
always (@* begin

tmpl = a & b;

tmp2 = ¢ & d;

y = tmpl | tmp2Z;
end

(

"] Tampereen yliopisto
Tampere University

conditional events - iff

 if the expression after iff is true, the event can
happen

* the expression is evaluated when the event
happens!

 iff has precedence over or... or use parentheses

module latch (output logic [31:0] vy, input [31:0] a, input

enable) ;

always (@ (a iff enable == 1)

y <= a; //latch is in transparent mode
endmodule

(

"] Tampereen yliopisto
Tampere University

sequence events ##1

e a sequence is waited until the event is considered

occured
— see sequence syntax in 16.7

sequence abc;
@ (posedge clk) a ##1 b ##1 c;

endsequence

program test;
initial begin
@ abc $display("Saw a-b-c");
Ll : ...
end
endprogram

(

"] Tampereen yliopisto
Tampere University

wait or level sensitive

« wait waits until the statement experssion evaluates
and executed following statement with no delay

it implements level sensitive event control

— that is, if the statement evaluates true when reached, it
will pass, not wait for next edge

begin
wait (!enable) #10 a = Db;
#10 ¢ = d;

end

(

"] Tampereen yliopisto
Tampere University

level sensitive sequence control

* sequences have a built in triggered method that
returns true if the sequence has happened

* this can be used with wait statement to level
sensitive control

sequence abc;
@ (posedge clk) a ##1 b ##1 c;
endsequence

wait (abc.triggered);

repeat

« with repeat one can wait that the event occurs
given times until proceeding

// will execute event expression three times
repeat (3) @ (event expression)

(

"] Tampereen yliopisto
Tampere University

intra-assignment

« one can delay assignment with so called intra-assignment
delay and event control

* insert delay/event control between the assignment

« useful to fix race conditions in fork-join, assign both
variables, add delay, delay ensures that both will be
assigned correctly

// same as temp = b; #5 a = temp; // race free
a = #5 b; fork

a = #5 b;
// wait 5 clk cycles until the data is b = #5 a;
assgined to a, notice that data can change join
during this, but the old value is assigned
a <= repeat(5) ((posedge clk) = data;

(

= Tampereen yliopisto
Tampere University

Process and process control

« Just for curiosity, see 9.6 for precise info

« wait fork blocks until the child subprocesses have
completed

» disable stops a task before it reaches end, it can also
terminate a named block
— can be used to get goto —like structure

* built in class process is given, has own class methods,
cannot be extended, cannot be constructed (instead use
process::self() method)
— a bit unclear how this is actually beneficial..

"] Tampereen yliopisto
Tampere University

Semaphores

 Builtin class for key bucket synchronization

* Process reserves key(s), process cannot continue until it gets
key(s)

« The initial key amount is given in constructor new(int keyCount
=0), defaultis O

« processes can put keys in the bucket with put(keyCount=1)

« processes can take keys with get(keyCount=1), if not enough
keys available, the call will block until enough keys are returned

* process can non-blockingly try to get keys with int

try _get(keyCount=1), return value is O if no keys were available
(

"] Tampereen yliopisto
Tampere University

mailboxes

 built in class for exchanging messages between processes

 receiver can check mailbox for new messages
— wait if there is no mail
— or proceed

» The mailbox can be bound or unbounded
— bound has a limit, sender may be blocked until receiver empties box
— unbound has unlimited room

« By default, accepts any type as message and one mailbox can
contain several types
— a mailbox can be parametrized to accept only one type

(

"] Tampereen yliopisto
Tampere University

mailboxes

* mailbox or parametrized mailbox #(type)
« constructor new(bound=0)

« send message put(msg) (blocking) or int try_put(msg) (non-
blocking)

« receiver message get(ref msg) or peek(ref msg)
— the difference is that peek() does not remove the message from the
mailbox
 try to receive without blocking try_get(ref msg), try peek(ref
msgQ)

« get number of messages with int num()
(

"] Tampereen yliopisto
Tampere University

event ¢;

Named event o
* One can create named events that can be wait for with wait() or @
* event name;
« Event has name.triggered that tells if the event has occured

— can be used with wait(name.triggered)
« Event can be dispatched with operator ->
« Events can be wait in order with wait_order(event1, event2,..)

— events must occur in the given order, othewise a runtime error is
produced

« Events can be compared

(

"] Tampereen yliopisto
Tampere University

CONTROL STRUCTURES

(

= Tampereen yliopisto
Tampere University

Conditional if - else

* as in many languages, else part is optional

* no need for separating the body, but begin-end block may
be used (and recommended)

if (x> 0) if (x> 0) i £ > 0
y = 0; begin 1t (X__ _)
else y = 0; y = 0;
-1 B else if (x < 0)
y = z =Y _ 1.
end y =
else
y =1

(

"] Tampereen yliopisto
Tampere University

case statement

 similar to C/C++
e can handle x and z

. logic [1:0] data;
logic [15:0] data;

case (data)

case (data) 2'b0x,2'"b00: x =
167d0: x = 0; 0
16;d1i X =_1; 2'b10: x = 1;
default x = 0; default x = 0;
endcase

endcase

(

= Tampereen yliopisto
Tampere University

loops

* six different ways to loop
« forever, repeat(), while(), for(;;), do while(), foreach()
« quite similar to other languages

forever

« forever loops forever
« good for generating clocks
 remember to avoid zero delay hang

initial begin
clockl <= 0;
clock?2 <= 0;

fork
forever #10 clockl = ~clockl;
#5 forever #10 clock2 = ~clock2;
join
(end

"] Tampereen yliopisto
Tampere University

repeat

* repeats the body as many times as given parameter

// prints three steps
repeat (3) begin

Sdisplay (“step ”);
end

(

"] Tampereen yliopisto
Tampere University

DFF with control structures

module dff # (parameter data width g =
(
input wire clk,
input wire rst n,
input wire [data width g-1:0] d,
output logic [data width g-1:0] g
) ;
always ff @ (posedge clk or negedge
begin
if (~ rst_n) begin

q <= 0;
end
else begin
q <= d;
end
end
endmodule

(

= Tampereen yliopisto
Tampere University

8)

// Clock input
// Reset input
// D input

// Q output

rst n)

Ready!

How many of these
begins and end do
we absolutely need?

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

unique-if

(

unique if
— make a violation report, if there is no matching condition within the if-block
— Ensures that there is no overlap in if-else-if’s (so it can be done parallel)
unique0 if

— reverse of unique, no violation if no matches, but ensures that there is no
overlap

priority

— same as unique but allows multiple matches for one variable while requires
that the given if-else-if conditions are evaluated in order

unique if ((a==0) || (a==1)) $display ("0 or 1");
else if (a == 2) Sdisplay("2");
else if (a == 4) S$display("4"); // values 3,5,6,7 cause a

violation report

= Tampereen yliopisto
Tampere University

case with do not cares

« casez handles z's as do not cares
— use ? in place of z's in case statements

« casex handles x’s as do not cares
— use X in place of x’s in case statements

logic [7:0] 1ir;

casez (ir)
8'b1l7??27??27??27?: instructionl (
8'b01?2?27??2?2?2: instruction?2 (
8'b0001?272?27?: instruction3(
8'b000001??: instructiond (
endcase

ir
ir
ir
ir

) 7
) ;
).
)

(

"] Tampereen yliopisto
Tampere University

case statement with unique

* the same unique, unique0 and priority can be used for
case as for if
— that is to check that at least one of the cases will be covered

— unique and unique0 ensure that no overlap and safe to execute in
parallel

— priority case should match only the first match

(

"] Tampereen yliopisto
Tampere University

for loop

for (int 1 = 0; i <= 255; 1i++)

begin
automatic int i;
for (i = 0, int J = 0; 1 <= 255; 1i++)

end

(

= Tampereen yliopisto
Tampere University

while and do while

* both loop as long as the expression is true
» while tests the expression in beginning
« do while tests the expression at the end

while (tempreg) begin do
if (tempreg[0]) $display (“looping\n”) ;
count++; #10
tempreg >>= 1; while (true);

end

(

"] Tampereen yliopisto
Tampere University

foreach

« goes through iterable arrays
* can cover over multidimensional arrays too

string words [2] = '{ "hello",
"world" };
int prod [1:8] [1:3];

// print each index and value
foreach(words [J 1)
sdisplay(j , words([]J]);

foreach(prod[k, m])

§ prod[k] [m] = 0;

"] Tampereen yliopisto
Tampere University

jumps

« three kind of break, continue, return
« quite self explanatory
* break jumps out of loop, no questions asked

« continue jumps at the end of the loop for another round
(expression is evaluated)

* return jumps out of function, can return a value, must be
correct type

"] Tampereen yliopisto
Tampere University

.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

Tasks and Functions

This slide set is based on IEEE 1800-2012 ©
standard of SV

Subroutines: Tasks and functions

« Tasks and functions are for repeating work
— corresponds to functions in many languages

 Tasks consume time, but cannot return value
— can have delays
— you implement logic inside
— can pass return value through arguments

* Functions do not consume time, but can have return value
— cannot have delays
— non-void one can be operand of expressions

(

"] Tampereen yliopisto
Tampere University

Tasks

« Can have time delays etc. inside
« (Can take arguments

« Control is returned when task is completed

— If a task enables other tasks, all need to complete before returning
task mytaskl (output int x, input logic y);

endtask

task mytask?2;
output x;
input vy;
int x;
logic vy;

(endtask

= Tampereen yliopisto
Tampere University

Functions

* Functions should not contain anything that consumes time
— #, ##, always

« As atask can consume time, functions should not call any
tasks

* Functions can call other functions
* Functions can suspend processes

« Main use to produce values for evaluating expressions
(

"] Tampereen yliopisto
Tampere University

Function return value

 Function can return a value

— The type can be explicitly defined
— it can be only a range and sign, but logic is defaulted then

* Function can be void without any return value

 The arguments are passed same way than to tasks

(

"] Tampereen yliopisto
Tampere University

Functions

* return value can be given as return or using built in
implicit variable with the same name as the function

function logic [15:0] myfuncl (int x, int y);

myfuncl = x*y; // return value assigned
endfunction

function logic [15:0] myfunc2;
input int x;
input int vy;

return x*y; // return value through return
endfunction

(

"] Tampereen yliopisto
Tampere University

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

Task arguments

* input — copy value in the beginning
— default
« output — copy value out at the end
* inout — copy value in the beginning and out at the end

« ref — pass value to the task as reference

« data type maybe specified, or inherited, or default to logic

Task execution

« Statements inside task are executed sequentially until
endtask

« task can return at any point

« task is called as it would be “function” by passing desired
values as arguments
— values should meet the declared types

— if argument is output but the calling value is ouput as well, a
compilation error should rise

(

"] Tampereen yliopisto
Tampere University

Argument passing

 Pass by value
— default, the value is copied

« Pass by reference with ref
— does not copy values, only the handle
— especially for large values, structures, arrays

— change to the data will change it outside too
* as no copy is made of the values

— only variable, class property, unpacked structure member, unpacked array
element are legal to pass as by reference

— NO NETS!

(

= Tampereen yliopisto
Tampere University

Argument passing

(

Arguments can have default value with = operator
Arguments can be bind by the name

if function/task takes no arguments, () are optional

function int fun(int j = 1, string s = "no");
endfunction

fun(2, "yes”);

fun(.3(2), .s("yes”));

fun(.s(”yes”)); // 1 gets default value

fun(, ”yes”); // 1 gets default value

= Tampereen yliopisto

Tampere University

.

- Tampereen yliopisto
Tampere University

SystemVerilog
Introduction

Code structure and Simulation

This slide set is based on IEEE 1800-2012 ©
standard of SV

Packages

* package...endpackage provides method to capsulate
namespaces

« package is imported to design instead of “include

— including a file is simple text replace, which may cause
compilation errors due to overlapping names or produce cryptic
dependencies

— Import gives visibility to the package

e accessing package is done through :: operator

(

"] Tampereen yliopisto
Tampere University

Packages

package p;

typedef enum { FALSE, TRUE } bool t;
endpackage
package g;

typedef enum { ORIGINAL, FALSE } teeth t;
endpackage

module topl ;
import p::*;
import g::teeth t;

teeth t myteeth;

initial begin
myteeth = g:: FALSE; // OK
myteeth = FALSE; // ERROR: Direct reference to FALSE refers to the

end // FALSE enumeration literal imported from p
endmodule

(

= Tampereen yliopisto
Tampere University

Interface

* Encapsulates communication between design blocks

|t capsulates several wires / ports inside one item that can be
passed between blocks

« Can have other elements, parameters, constants,

(

variables, functions, and tasks

— If two modules are connected through the interface item, the
communication may be just a subroutine call of the interface

interface <name> (<port etc. declarations>);
endinterface

"] Tampereen yliopisto
Tampere University

Interface example

interface iZ2c (input logic clock);
logic sda, scl;
endinterface: i2c

module masterDev (i2c bus);
always (@ (posedge clock) bus.scl <= ~bus.scl;
endmodule

module slaveDev (i2c bus);
endmodule

module top;
logic clk = 0;
i2¢c i2c intf(.clock(clk));
// connect master&slave to same interface
masterDev (.bus (12c intf));
slaveDev (.bus (i2c intf));

endmodule

(

= Tampereen yliopisto
Tampere University

modport

* modport declares the direction of the logic
connections within an interface

interface spi;
wire clk, c¢s, mosi, miso;
modport master (input miso, output clk, cs, mosi);
modport slave (output miso, input clk, cs, mosi);
endinterface

module m(spi 1i);
endmodule

spl spi intf();
m(.1(spi intf.master));

(

= Tampereen yliopisto
Tampere University

Simulation time and precision

« With SystemVerilog you can do functional simulation with timing
incorporated

— timeunit is the measurement unit, s, ms, us, ns, ps, fs
— timeprecision is the degree of accuracy for delays
— or "timescale <time unit>/ <time precision>

 Effective as "if no timeunit/precision given” up until another “timescale is
encountered

 Global time unit is the simulation time unit that is the smallest of the
given time units (same for precision)

— also referred as step
(

= Tampereen yliopisto
Tampere University

Compilation and Elaboration

Compilation checks the code syntax and semantic errors

Elaboration binds the design components together before
the simulation

Typically "compilation” == compilation+elaboration

Namespaces can cause trouble in compilation

"] Tampereen yliopisto
Tampere University

FURTHER READING

(

"] Tampereen yliopisto
Tampere University

Packages

» http://blogs.mentor.com/verificationhorizons/blog/2
010/07/13/package-import-versus-include/

http://blogs.mentor.com/verificationhorizons/blog/2010/07/13/package-import-versus-include/
http://blogs.mentor.com/verificationhorizons/blog/2010/07/13/package-import-versus-include/

21. 1/0 System tasks

* Very similar to C/C++

 fd = $fopen(filename, type);

« Sfdisplay(fd, "text”);

« ¢ = $fgetc(fd);

- ret = $fgets (str, fd); // read line

 logic [7:0] mem[1:256]; $readmemh("mem.data", mem); //
read file of hexadecimals to array

(

"] Tampereen yliopisto
Tampere University

Simulation control tasks (20.2)

$finish
Sexit

Sstop

Simulation time functions (20.3)

Srealtime Sstime
Stime

Timescale tasks (20.4)

Sprinttimescale Stimeformat

Conversion functions (20.5)

S$bitstoreal S$realtobits
Sbitstoshortreal Sshortrealtobits
Sitor S$rtoi

Ssigned Sunsigned
Scast

Data query functions (20.6)

S$bits Sisunbounded

Stypename
Array query functions (20.7)

Sunpacked _dimensions Sdimensions
Sleft Sright
Slow Shigh
Sincrement S$size
Math functions (20.8)

Sclog2 Sasin
Sln Sacos
Sloglo Satan
Sexp Satan2
Ssqrt Shypot
Spow $sinh
S$floor Scosh
Sceil Stanh
S$sin Sasinh
Scos Sacosh
Stan Satanh
Severity tasks (20.9)

Sfatal Serror
Swarning Sinfo
Elaboration tasks (20.10)

Sfatal Serror
Swarning Sinfo

Assertion control tasks (20.11)

$asserton Sassertoff
Sassertkill

Assertion action control tasks (20.12)
$assertpasson SassertpassofT
Sassertfailon Sassertfailoff
$assertnonvacuouson

Sassertvacuousoff

Assertion functions (20.13)

Sonehot $onehot0

Sisunknown $sampled

Srose Sfell

S$stable Schanged

Spast Scountones]
Spast_gclk Srose_gclk

Sfell_gclk S$stable_gelk

Schanged gclk Sfuture_gelk

Srising_gclk S$falling_gclk

$steady gelk Schanging_gclk

utility
system

tasks

Coverage control functions (20.14)

Scoverage control
Scoverage get
Scoverage_save Sget_coverage
$set_coverage_db_name Sload_coverage_db

Probabilistic distribution functions (20.15)

Srandom
Sdist_erlang
$dist_normal

Scoverage_get max
Scoverage_merge

Sdist_chi_square
$dist_exponential
$dist_poisson

Sdist_t $dist_uniform
Stochastic analysis tasks and functions (20.16)
$q_initialize $q_add

$q_remove $q_full

$q_exam

PLA modeling tasks (20.17)

SasyncSandSarray SasyncSandSplane
SasyncSnandSarray SasyncSnandSplane
SasyncSorSarray $asyncSorSplane
SasyncSnorSarray SasyncSnorSplane
$sync$andSarray $sync$andSplane
$sync$nandSarray $sync$nandSplane
$sync$orSarray $sync$or$plane
$sync$norSarray $sync$nor$plane

Miscellaneous tasks and functions (20.18)

$system

Display tasks (21.2) Memory load tasks (21.4)

Sdisplay Swrite Sreadmemb Sreadmemh
$displayb $writeb
ig!sp}ayh iwrg;eh Memory dump tasks (21.5)

isplayo writeo
$'s.trcl)3b-ey $monitor Swritememb Swritememh
$strobeb $monitorb
$strobeh $monitorh Command line input (21.6)
$strobeo $monitoro

$monitoroff Stest$plusargs SvalueSplusargs
$monitoron
VCD tasks (21.7)
File I/O tasks and functions (21.3) $dumpfile $dumpvars
$dumpoff $dumpon

i;;]_osle igjpin Sdumpall Sdumplimit
$fd!splayb $fww§teb Sdumpflush Sdumpports
S d!SPlayh $fy !rf teh Sdumpportsoff $dumpportson

1spray vnte Sdumpportsall $dumpportslimit
$fdisplayo $fwriteo Sdumpportsflush
S$fstrobe Sfmonitor PP
S$fstrobeb Sfmonitorb
S$fstrobeh $fmonitorh
S$fstrobeo $fmonitoro
Sswrite $sformat
s 214 110 System
$swriteh $fgetc
$swriteo Sungetc
S$fscanf $fgets
S$fread $sscanf t a s ks
Sfseek $Srewind
$fflush Sftell
$feof Sferror

(

= Tampereen yliopisto
Tampere University

22. compiler directives

- rrim_ 22.13] L
o 2 ¢ similar to C/C++
“begin keywords [22.14]] i

“celldefine [22.10] °

e e notice timescale,
“define 22.5.1

o default_nettype,
“elsif [22.6]

“end keywords [22.14]

“endcelldefine [22.10]

“endif [22.6]

“ifdef [22.6]

“ifndef [22.6]

“include [22.4]

“line [22.12]

“nounconnected drive[22.9]

“pragma [22.11]

“resetall [22.3]

“timescale [22.7]

“unconnected drive [22.9]

“undef [22.5.2]

“undefineall [22.5.3]

(

= Tampereen yliopisto
Tampere University

	Slide 1: SystemVerilog Introduction
	Slide 2: Objective
	Slide 3: Things left out
	Slide 4: SystemVerilog
	Slide 5: SystemVerilog
	Slide 6: About this lecture
	Slide 7: SystemVerilog Introduction
	Slide 8: Comments etc.
	Slide 9: Number literals
	Slide 10: Strings
	Slide 11: SystemVerilog Introduction
	Slide 12: Design elements
	Slide 13: Module
	Slide 14: Hierarchy
	Slide 15: Hierarchy example
	Slide 16: Starting a DFF module
	Slide 17: SystemVerilog Introduction
	Slide 18: Data types and data objects
	Slide 19: Variables
	Slide 20: Nets
	Slide 21: DFF with data types
	Slide 22: Packed arrays
	Slide 23: Arrays
	Slide 24: Arrays
	Slide 25: Constants and parameters
	Slide 26: Parameter example
	Slide 27: DFF with parameterized arrays
	Slide 28: Further reading
	Slide 29
	Slide 30: Integers
	Slide 31: Other types
	Slide 32: Other types
	Slide 33: Scope and lifetime
	Slide 34: Casting
	Slide 35: Aggregation
	Slide 36: Aggregation
	Slide 37: Dynamic arrays
	Slide 38: Array manipulation
	Slide 39: Queue
	Slide 40: Queue methods
	Slide 41: SystemVerilog Introduction
	Slide 42: Assignments
	Slide 43: Assignments
	Slide 44: Continuous assignment
	Slide 45: Continuous assignment example
	Slide 46: Procedural assignments
	Slide 47: Blocking procedural assignments
	Slide 48: Non-blocking procedural assignments
	Slide 49: Blocking and non-blocking
	Slide 50: Assignment summary
	Slide 51: DFF with continuous assignment?
	Slide 52: Assignment extension and truncation
	Slide 53: Extension and truncation example
	Slide 54: Further reading
	Slide 55: Procedural continous assignment
	Slide 56: Assignment patterns
	Slide 57: Array concatenation and alias
	Slide 58: Operators
	Slide 59: Operators in general
	Slide 60
	Slide 61
	Slide 62: Further reading
	Slide 63: Operators in general
	Slide 64: Predecense
	Slide 65: SystemVerilog Introduction
	Slide 66: Procedures
	Slide 67: Procedures
	Slide 68: Initial, always, final
	Slide 69: Initial
	Slide 70: always*
	Slide 71: always
	Slide 72: always_comb
	Slide 73: always_latch
	Slide 74: always_ff
	Slide 75: DFF with always procedure
	Slide 76: Further reading
	Slide 77: final
	Slide 78: Blocks
	Slide 79: begin–end
	Slide 80: Initial procedure with begin-end
	Slide 81: fork-join
	Slide 82: fork clock example
	Slide 83: DFF with begin-end block
	Slide 84: Timing control
	Slide 85: Procedural timing control
	Slide 86: delay control #
	Slide 87: event control @
	Slide 88: event control @ examples
	Slide 89: DFF with event control
	Slide 90: Further reading
	Slide 91: events in fork join
	Slide 92: Event or -operator
	Slide 93: @*
	Slide 94: conditional events - iff
	Slide 95: sequence events ##1
	Slide 96: wait or level sensitive
	Slide 97: level sensitive sequence control
	Slide 98: repeat
	Slide 99: intra-assignment
	Slide 100: Process and process control
	Slide 101: Semaphores
	Slide 102: mailboxes
	Slide 103: mailboxes
	Slide 104: Named event
	Slide 105: Control structures
	Slide 106: Conditional if – else
	Slide 107: case statement
	Slide 108: loops
	Slide 109: forever
	Slide 110: repeat
	Slide 111: DFF with control structures
	Slide 112: Further reading
	Slide 113: unique-if
	Slide 114: case with do not cares
	Slide 115: case statement with unique
	Slide 116: for loop
	Slide 117: while and do while
	Slide 118: foreach
	Slide 119: jumps
	Slide 120: SystemVerilog Introduction
	Slide 121: Subroutines: Tasks and functions
	Slide 122: Tasks
	Slide 123: Functions
	Slide 124: Function return value
	Slide 125: Functions
	Slide 126: Further reading
	Slide 127: Task arguments
	Slide 128: Task execution
	Slide 129: Argument passing
	Slide 130: Argument passing
	Slide 131: SystemVerilog Introduction
	Slide 132: Packages
	Slide 133: Packages
	Slide 134: Interface
	Slide 135: Interface example
	Slide 136: modport
	Slide 137: Simulation time and precision
	Slide 138: Compilation and Elaboration
	Slide 139: Further reading
	Slide 140: Packages
	Slide 141: 21. I/O System tasks
	Slide 142: 20. utility system tasks
	Slide 143: 21. I/O System tasks
	Slide 144: 22. compiler directives

