
SystemVerilog

Introduction

This slide set is based on IEEE 1800-2012 ©
standard of SV

Objective

• Learn basic concepts of SystemVerilog in verification point of view

– Most of the SystemVerilog concepts are for verification

• Lots of slides and information, not low-level details

– To become professional with SV, one must read the standard, explore

and test, and read the standard more

• Not all tools (compilers, simulators) are supporting all the aspects

– Tool manuals need to be read too

Things left out

• Detailed information about how the language is processed

in the simulator, eg. scheduling

– this might be vital information when you really dig into SV, as there

are all kinds of possibilities provided

• Most of the SystemVerilog standard:

– Use this slide set only as quick start guide, refer to the standard for

usage

SystemVerilog

• SystemVerilog is extended and improved Verilog to meet better

requirements in HW verification

– Originally an extension to Verilog, but merged to one language

• Originally developed by Accellera, then later standardized by IEEE

– Currently IEEE standard 1800-2017

• Extends Verilog-2005

– SV is Verilog –compatible (as C++ is C compatible), but SV allows RTL

descriptions that would not work on Verilog compilers

SystemVerilog

• Originally an object-oriented programming extension to

Verilog

– The ”system” part

– Purposefully designed to improve verification tasks

– ”de-facto” assertion language

• OOP allows building testbenches and other useful tools to

help designing, implementing, testing, and verifying

– OOP brings abstraction and reuse

About this lecture

• Before diving into the object-oriented properties, this

lecture explains the basic concepts in SystemVerilog

• Most concepts are common to design and verification

• Large number of slides, half of them covered on the lecture

– All slides shared for self-study

SystemVerilog

Introduction

General Conventions

This slide set is based on IEEE 1800-2012 ©
standard of SV

Comments etc.

• A comment line starts with //

• A comment block starts with /* and ends with */

• something starting with $ is a system task/function

– in addition to built in, you can create your own!

• Compiler directives start with ` like `define (in Finnish qwerty, shift+´)

Number literals

659 // is a decimal number

'h 837FF // is a hexadecimal number

'o7460 // is an octal number

4af // is illegal (hexadecimal format requires 'h)

4'b1001 // is a 4-bit binary number

5'D 3 // is a 5-bit decimal number (bases are not case sensitive)

3'b01x // is a 3-bit number with the least significant bit unknown

12'hx // is a 12-bit unknown number

16'hz // is a 16-bit high-impedance number

8 'd -6 // this is illegal syntax

-8 'd 6 // this defines the two's complement of 6,

// held in 8 bits—equivalent to -(8'd 6)

4 'shf // this denotes the 4-bit number '1111', to

// be interpreted as a 2's complement number,

// or '-1'. This is equivalent to -4'h 1

-4 'sd15 // this is equivalent to -(-4'd 1), or '0001'

16'sd? // the same as 16'sbz

Strings

• between double quotes ””

• Strings can be assigned to integral types, like arrays

• can be casted

byte mystring[0:12] = "Hello world\n";

SystemVerilog

Introduction

General Building Blocks and Structure

This slide set is based on IEEE 1800-2012 ©
standard of SV

Design elements

• Primary building blocks and containers for declarations

and code

• module, program, interface, checker,

package, primitive, config

• We will only cover module for now

• interface and package in detail later on this lecture

Module

• Module is the basic block, contains (verification / RTL)

code and interconnections between verification and design

blocks

– It is the place in which you would describe your RTL

module <name> (<ports with directions>);

// content blocks and declarations

endmodule

Hierarchy

• Hierarchical design can be implemented by

instatiating modules inside each other

<name> <inst_name> (

<port>(<connect_to>),

<port>(<connect_to>)

);

Hierarchy example

module top; // no ports in this module

// signal declarations

logic a,b,sel; // logic is the variable datatype

 wire y; // wire declares a net

 // component instantiation

 mux mymux(.a(a), .b(b), .sel(sel), .y(y);

endmodule

// component declaration: input and output ports

module mux(input wire a,b,sel, output logic y);

 y = sel ? a : b;

endmodule

Starting a DFF module

module dff (

input clk, // Clock input

input rst_n, // Reset input

input d, // D input

output q // Q output

);

endmodule

What would we

need to define in

this?

What would we

need to define in

this?

SystemVerilog

Introduction

Data Types

Data types and data objects

• Data type defines a type of data value that can be

manipulated with operations given for that data type

– logic, wire, bit, byte, integer, time...

• Data object is a named entity/item of a data value with

given data type

Variables

• Basic data variable

• Name: logic

– (old) verilog syntax: reg

➢ Recognize reg, use logic in your own code

• 4-state type

• Cannot have multiple drivers, no drive strength information

• Also (4-state) integer, (2-state) bit, byte, int …, (float) real and

more

•0 – logic zero or false condition

•1 – logic 1 or true condition

•x – unknown logic value

•z – high impedance state

Nets

• Don’t store data, but only represent connections

• Name: wire

• 4-state type

• also uwire, tri, trireg, there’s more, but wire is the most

common

DFF with data types

module dff (

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire d, // D input

output logic q // Q output

);

endmodule

Could we make

it wider than 1-

bit?

Could we make

it wider than 1-

bit?

Packed arrays

• Usual data types are by default treated as 1-bit wide scalars

• packed arrays can be used to define multibit vectors

wire [15:0] busa; // a 16-bit bus

// a 4-bit packed array made up of (from most to

// least significant) v[3], v[2], v[1], and v[0]

logic [3:0] v;

// a 4-bit packed array in range -8 to 7

logic signed [3:0] signed_reg;

logic [-1:4] b; // a 6-bit packed array

// declares three 5-bit variables

logic [4:0] x, y, z;

Arrays

• packed array, when dimensions are before the identifying name

– also referred to as vector

– guaranteed continuous stream of bits in memory

– can be made only of single bit data types!

– can have unsigned/signed, eg. 48bit arithmetics are possible

• unpacked array, when dimensions are after the identifying name

– can be made of any data type

• multidimensional arrays are supported

Arrays

bit [31:0] array; // Packed

int addr [32]; // Unpacked

// or

int addr [31:0];

byte b = array[15:8];

array[31:0] = addr[5];

// 10 elements of 4 8-bit bytes

// (each element packed into 32 bits)

bit [3:0] [7:0] joe [1:10];

Constants and parameters

• constants are named data objects that do not change over the elaboration

time or run-time

– elaboration time constants: parameter, localparam, specparam

– run-time constants: const

• parameter can be overridden in instantion of module, interface or program

– For example, you can create a bus interface that by default is 8 bits wide

– Then, you can instantiate 16 bits wide bus by overriding the width parameter

• Parameters can depend on other parameters!

• Parameters can have type and range!

Parameter example

interface my_bus #(parameter width = 8);

 logic [width-1:0] bus;

endinterface: my_bus

module top;

 localparam BUS_WIDTH = 16;

 // assignment by name

 my_bus #((.width(BUS_WIDTH))) bus16

 // or assignment by order:

 my_bus #((BUS_WIDTH)) bus16_by_order

endmodule

DFF with parameterized arrays

module dff #(parameter data_width_g = 8)

(

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire [data_width_g-1:0] d, // D input

output logic [data_width_g-1:0] q // Q output

);

endmodule

How to define

functionality?

How to define

functionality?

FURTHER READING

Data types

https://blogs.sw.siemens.com/verificationhorizons/20

13/05/03/wire-vs-reg/

What’s the deal with those wire’s

and reg’s in Verilog?

https://blogs.sw.siemens.com/verificationhorizons/2013/05/03/wire-vs-reg/
https://blogs.sw.siemens.com/verificationhorizons/2013/05/03/wire-vs-reg/

Integers

Name Type

shortint 2-state, 16 bit signed

int -’’- 32bit signed

longint -’’- 64bit signed

byte 2 state, 8-bit signed

bit 2 state, user defined

logic 4 state, user defined

reg 4 state, user defined

integer 4 state, 32bit signed

time 4 state, 64 bit unsigned

• User defined default to unsigned, can be set signed

• Signed ones can be set unsigned

Other types

• data type void can be used to present ”no value” e.g. in function

returns

• string is a data type (do not confuse to string literals) that has

traditional C++ like string features

– one character is type of byte

– no truncation like in assigning string literal to a vector of bytes

– built in manipulation functions

Other types

• event type is for communication and synchronization between

concurrent processes

• user can define own types with typedef

• enum allows to enumerate data type content

– anonymous enums are allowed too

– be careful with variable types, remember that 2 state cannot have x/z

states

// state is the name of variable

enum bit [1:0] {IDLE=2’b00, S0=2’b01,

S1=2’b10, S2=2’b11} state;

Scope and lifetime

• Variables outside desing elements have scope of the file

(compilation unit) and lifetime of whole simulation (static)

• Variables inside module, interface, program or checker are

local to that and have static lifetime

• Variables inside task, function or block are local and static

by default

– with automatic the variable has lifetime of a call

Casting

• Data types can be casted with ’

• There are limitations what can be casted to what

– not as elaborate as C for example

• Sign can be casted with signed’() and unsigned’()

• $cast built in function allows dynamic casting

type’(expression)

int a = int’(2.0*5.0);

Aggregation

• struct can be used to collect data types under one name
– by default structures are unpacked

• read: can contain any data types

• struct packed allow accesing a bit vector with split names
– all the data types are in following memory addresses

• union packs different datatypes over each other
– one can access same place or subset of it through different names

– can have mismatched size

• union packed
– cannot have mismatched member sizes

• union tagged is type checked union

Aggregation

typdef struct {

 bit [7:0] code;

 bit [31:0] addr;

} instr_t;

instr_t instr;

instr.code = 0;

struct packed signed{

 int a;

 byte b;

} pack;

// byte b (1st goes MSB)

pack[7:0]

typdef union {

 bit [31:0] code;

 bit [31:0] addr;

} ex_u;

Dynamic arrays

• Can contain any data type

– created with []

– construct with new[], get size with size(), delete() to clear

// Dynamic array of 4-bit vectors

bit [3:0] nibble[];

// Fixed-size unpacked array composed

// of 2 dynamic subarrays of integers

integer mem[2][];

// arr2 sized to length 4; dynamic subarrays

// remain unsized and uninitialized

int arr2 [][] = new [4]; arr2.size;

Array manipulation

• lots of methods and ways in addition to basic slicing and

assignment

• e.g. find(), shuffle(), sort()

• sum(), and(), or(), xor()

Queue

• Dynamic collection of homogenous elements, kept in
order

– constant time acces and insert/delete first/last

• access first element with 0 and last element with $

• same manipulation as for arrays

• create as unpacked array but use $ as the size

bit myqueue[$];

integer Q[$:8] = {1,2,3}; // 8 max size

Queue methods

• size(), insert(idx, element), delete(idx),

• element pop_front(), element pop_back(),

• push_front(element), push_back(element)

SystemVerilog

Introduction

Assignments, Operators,

Expressions

ASSIGNMENTS

Assignments

• Two ways to assign values

• continuous assignments

– assign to nets or variables

– similar to gate driving nets

– right-side is combinational logic that drives the net continuously

• procedural assignments

– assign only to variables

Continuous assignment

• Driven continuously into variables and nets
– that is, when something changes on the right side, it is assigned

immediately (if no delays included) to that variable/net

• assignment can be done in the declaration or later
• Later: keyword assign

• nets can be continuosly assigned by multiple assignments
• Multiple drivers

• variables can be continously assigned only once
• Single driver

Continuous assignment example

// net declaration with continuous assignment

wire mynet = enable;

// or

wire mynet;

assign mynet = enable;

Procedural assignments

• Procedural assignments happen inside procedures

– always, initial, task, function, covered later

• ”triggered” assignments, happen when the assignment is

reached

– Compare: continuous assignment holds through the simulation

Blocking procedural assignments

• target = evaluated statement;

• The assignment must go through before the execution

moves to the next statement

– Assignments processed sequentially

Non-blocking procedural assignments

• target <= evaluated statement;

• The assignments are scheduled at the end of the timestep

– Assignments processed in parallel

// blocking assignment

initial begin

a = 1; // a will be assigned 1 immediately

b = #2 0; // b = 0 at time 2, execution BLOCKED until!

 c = #10 1; // c = 1 at time 12!

end

// non-blocking assignment

initial begin

d <= #10 1; // d will be assigned 1 at time 10

e <= #2 0; // e will be assigned 0 at time 2

end

// swap, at the end of time unit, a = 1 and b = 0

initial begin

 a = 0;

 b = 1;

 a <= b;

 b <= a;

end

Blocking and non-blocking

Assignment summary

• Continuous:

– assign primitive

– In declaration

• Procedural

– Blocking: =

– Non-blocking: <=

DFF with continuous assignment?

module dff #(parameter data_width_g = 8)

(

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire [data_width_g-1:0] d, // D input

output logic [data_width_g-1:0] q // Q output

);

assign q = d;

endmodule

Just a direct

connection!

Just a direct

connection!

Not what we

want.

Not what we

want.

Assignment extension and truncation

• the left side rules

• when right side has fewer bits, it is padded
– unsigned -> padded according to the statement

– signed -> padded with sign extension

• when left side has fewer bits, truncation is made
– truncation of signed may lose sign

• Be careful, and try to avoid!

Extension and truncation example

logic [7:0] data;

logic [31:0] addr = ’hDEADBEEF;

logic addr2 = ’b0;

…

data <= 0;

data <= addr;

addr <= addr2;

What will

happen on

these lines?

What will

happen on

these lines?

Compiler error?Compiler error?
Everything’s

fine?

Everything’s

fine?

Not what we

expected?

Not what we

expected?

FURTHER READING

Assignments

Procedural continous assignment

• with keywords assign and force one can continuosly drive

expression result to a variable (assign for variables, force

for nets)

• deassign will end the assignment to a variable, variable

holds its current value

• release will end force assignment

Assignment patterns

• SV provides way to assign multiple values or
patterns into variables, structures and arrays

• pattern syntax is ’{ patterns };

typedef byte U[3];

var U A = '{1, 2, 3};

// same as '{y, y}

unpackedbits = '{2 {y}} ;

// same as '{'{y,y,y},'{y,y,y}}

int n[1:2][1:3] =

'{2{'{3{y}}}};

typedef struct {real r, th;} C;

var C x = '{th:PI/2.0, r:1.0};

Array concatenation and alias

• concatenation can be used to assign to multiple signals:

• alias can be used to have multiple names for same net

module byte_swap (inout wire [31:0] A, inout wire [31:0] B);

 alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;

endmodule

wire a,b,c;

wire [2:0] y;

assign {a,b,c} = y; // a = y[2], b = y[1], c = y[0]

OPERATORS

Operators in general

• Follow very closely to C/C++

• Quite self explanatory, but few exceptions

• === and !== consider x and z states too

• == and != can produce unknown (x), if x or z is involved

• ==? and !=? the ? treats right side x and z as wildcards

FURTHER READING

Operators

Operators in general

• shifting with >> and << is logical or zero padded

• shifting with >>> and <<< is arithmetic, and

padding is made according to unsigned/signed

• inside tells if left side operand can be found from

right side list

Predecense

• From left to right

• for operators ?: and -> and <-> the association is right to left

• When operator has higher predences, it is evaluated first in left to right

order

• Some operators are short circuit evaluated

– if the result can be determined without evaluating all operators, they may

be skipped

SystemVerilog

Introduction

Processes:

procedures, blocks, timing control

PROCEDURES

Procedures

• As hardware is parallel, SV must have methods for creating

parallel procedures

• initial

• always, always_comb, always_latch, always_ff

• final

Initial, always, final

• Initial is executed once

• at the start of simulation

• always is executed always, until the simulation ends

• final is executed once

• at the very end of the simulation

Initial

• initial procedure is executed only once

• It is typically used for initialization tasks

• Or to provide the initial stimulus to the simulated part

• Example: does not do much yet

initial inputs = 'b000000; // initialize inputs at time 0

always*

• always procedures are repeated until the simulator ends

– always, always_comb, always_lacth, always_ff

• Requires some kind of timing control

– most of the time, you’ll use always with an event/sensitivity list

always

• general purpose (parallel) procedure

• use for repetitive behaviour, e.g. generate clock

• with timing/event control can be used for creating combinational,

latched, and sequential HW

• without timing/event control, will deadlock the simulation

always #10 clk = ~clk; // toggle clk every 10 time units

always a = ~a; // deadlock! consumes all the simulation time

always_comb

• Especially made for modeling combinational logic

– Executed according to inferred sensitivity list that is figured out of

the code/expressions it contains

• Linting tool (etc.) should be used to ensure correct use

always_comb a = b & c;

always_latch

• Similar to always_comb, but for latched logic

always_ff

• similar to always_latch and always_comb, but for

synthesizable sequential logic

• can contain only one event control, and no blocking timing

controls

DFF with always procedure

module dff #(parameter data_width_g = 8)

(

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire [data_width_g-1:0] d, // D input

output logic [data_width_g-1:0] q // Q output

);

assign q = d;

always_ff q = d;

endmodule

Is this one line all

we need inside

always procedure?

Is this one line all

we need inside

always procedure?

Deadlock! How

to prevent it?

Deadlock! How

to prevent it?

FURTHER READING

Procedures

final

• final is executed once at the simulation end time

• it should execute without any delay

• if multiple final procedures exist, they are executed in arbitrary order

– simulation tools should however keep this execution in order over different

runs!

• calling $finish will trigger the end time for simulation and the call of the

final procedures

BLOCKS

begin–end

• sequential block

➢ procedural statements inside such are executed sequentially

• can contain event control (covered later)

• any delay values should be relative to each other

• Like the { } in C

Initial procedure with begin-end

initial begin

a = 0;

for (int index = 0; index < size; index++)

// initialize memory word

memory[index] = 0;

end

initial begin

// initialize at time zero

inputs = 'b000000;

// first pattern

#10 inputs = 'b011001;

// second pattern

#10 inputs = 'b011011;

#10 inputs = 'b011000;

#10 inputs = 'b001000;

end

fork-join

• parallel block

➢ procedural statements inside such are executed concurrently

• execution jumps away from the block when all statements

are executed

• a join, join_any, join_none ending the block control this

• join = continue when all spawned processes are completed

• join_any = continue when one spawned process completes

• join_none = continue without waiting any spawned processes to

complete

fork clock example

initial begin

clock1 <= 0;

clock2 <= 0;

fork

forever #10 clock1 = ~clock1;

#5 forever #10 clock2 = ~clock2;

join_none

end

DFF with begin-end block

module dff #(parameter data_width_g = 8)

(

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire [data_width_g-1:0] d, // D input

output logic [data_width_g-1:0] q // Q output

);

always_ff begin

q = d;

end

endmodule

Still does not work!
But possible to do multiple

things sequentally in always

Still does not work!
But possible to do multiple

things sequentally in always

TIMING CONTROL

Procedural timing control

• Two types, delay control and event expression

• A delay control is done with #

• An event control is done with @

• A wait statement combines event in while loop

delay control #

• Useful for example generate desired waveforms or to

separate stimulus from each other

always #10 clk = ~clk; // toggle clock every 10 time units

logic [7:0] r; // r declared as an 8-bit variable

begin

// a waveform controlled by sequential delays

#2 r = 'h35; // Note: Blocking assignment!

#2 r = 'hE2;

#2 r = 'h00;

#2 r = 'hF7;

end

event control @

• synchronization to a value change in net or a variable, or a

occurence of declared event

• can detect direction of the change

– posedge the value goes towards 1

• 0-> x,z,1 or x,z->1

– negedge the value goes towards 0

• 1->x,z,0 or x,z->0

– edge the values goes towards 0 or 1

event control @ examples

// controlled by any value change in the reg r

@r rega = regb;

// controlled by posedge on clock

@(posedge clock) rega = regb;

// always controlled by negedge on clock

always @(negedge clock) rega = regb;

// always controlled by edge on clock

always @(edge clock) rega = regb;

DFF with event control

module dff #(parameter data_width_g = 8)

(

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire [data_width_g-1:0] d, // D input

output logic [data_width_g-1:0] q // Q output

);

always_ff @(posedge clk or negedge rst_n)

begin

q <= d;

end

endmodule

But how to

handle reset?

But how to

handle reset?

FURTHER READING

Timing control

events in fork join

real AOR[]; // dynamic array of reals

byte stream[$]; // queue of bytes

// waits for array to be allocated

initial wait(AOR.size() > 0);

// waits for total number of bits

// in stream greater than 60

initial wait($bits(stream) > 60)...;

Packet p = new; // Packet 1 -- Packet is defined in 8.2

Packet q = new; // Packet 2

initial fork

@(p.status); // Wait for status in Packet 1 to change

@p; // Wait for a change to handle p

10 p = q; // triggers @p.

// @(p.status) now waits for status in Packet 2 to change,

// if not already different from Packet 1

join

Event or -operator

• multiple events can be waited with or

• also comma (,) can be used for the very same

behaviour

always @(a,b,c);

// is same as

always @(a or b or c);

@*

• with @* all the variables will be in the event list
– e.g. one of the variable changes -> event fires

• if the need is as sensitivity list in the beginning of
always block for combinational logic, use
always_comb instead

// equivalent to @(a or b or c or d or tmp1 or tmp2)

always @* begin

tmp1 = a & b;

tmp2 = c & d;

y = tmp1 | tmp2;

end

conditional events - iff

• if the expression after iff is true, the event can

happen

• the expression is evaluated when the event

happens!

• iff has precedence over or… or use parentheses

module latch (output logic [31:0] y, input [31:0] a, input

enable);

always @(a iff enable == 1)

y <= a; //latch is in transparent mode

endmodule

sequence events ##1

• a sequence is waited until the event is considered

occured

– see sequence syntax in 16.7

sequence abc;

@(posedge clk) a ##1 b ##1 c;

endsequence

program test;

initial begin

@ abc $display("Saw a-b-c");

L1 : ...

end

endprogram

wait or level sensitive

• wait waits until the statement experssion evaluates

and executed following statement with no delay

• it implements level sensitive event control

– that is, if the statement evaluates true when reached, it

will pass, not wait for next edge

begin

wait (!enable) #10 a = b;

#10 c = d;

end

level sensitive sequence control

• sequences have a built in triggered method that

returns true if the sequence has happened

• this can be used with wait statement to level

sensitive control

sequence abc;

@(posedge clk) a ##1 b ##1 c;

endsequence

...

wait(abc.triggered);

repeat

• with repeat one can wait that the event occurs

given times until proceeding

// will execute event_expression three times

repeat (3) @ (event_expression)

intra-assignment

• one can delay assignment with so called intra-assignment

delay and event control

• insert delay/event control between the assignment

• useful to fix race conditions in fork-join, assign both

variables, add delay, delay ensures that both will be

assigned correctly

// same as temp = b; #5 a = temp;

a = #5 b;

// wait 5 clk cycles until the data is

assgined to a, notice that data can change

during this, but the old value is assigned

a <= repeat(5) @(posedge clk) = data;

// race free

fork

a = #5 b;

b = #5 a;

join

Process and process control

• Just for curiosity, see 9.6 for precise info

• wait fork blocks until the child subprocesses have
completed

• disable stops a task before it reaches end, it can also
terminate a named block
– can be used to get goto –like structure

• built in class process is given, has own class methods,
cannot be extended, cannot be constructed (instead use
process::self() method)
– a bit unclear how this is actually beneficial..

Semaphores

• Built in class for key bucket synchronization

• Process reserves key(s), process cannot continue until it gets

key(s)

• The initial key amount is given in constructor new(int keyCount

= 0), default is 0

• processes can put keys in the bucket with put(keyCount=1)

• processes can take keys with get(keyCount=1), if not enough

keys available, the call will block until enough keys are returned

• process can non-blockingly try to get keys with int

try_get(keyCount=1), return value is 0 if no keys were available

mailboxes

• built in class for exchanging messages between processes

• receiver can check mailbox for new messages

– wait if there is no mail

– or proceed

• The mailbox can be bound or unbounded

– bound has a limit, sender may be blocked until receiver empties box

– unbound has unlimited room

• By default, accepts any type as message and one mailbox can

contain several types

– a mailbox can be parametrized to accept only one type

mailboxes

• mailbox or parametrized mailbox #(type)

• constructor new(bound=0)

• send message put(msg) (blocking) or int try_put(msg) (non-

blocking)

• receiver message get(ref msg) or peek(ref msg)

– the difference is that peek() does not remove the message from the

mailbox

• try to receive without blocking try_get(ref msg), try_peek(ref

msg)

• get number of messages with int num()

Named event

• One can create named events that can be wait for with wait() or @

• event name;

• Event has name.triggered that tells if the event has occured

– can be used with wait(name.triggered)

• Event can be dispatched with operator ->

• Events can be wait in order with wait_order(event1, event2,..)

– events must occur in the given order, othewise a runtime error is
produced

• Events can be compared

event e;

-> e; // trigger e

wait(e.triggered);

@ e;

CONTROL STRUCTURES

Conditional if – else

• as in many languages, else part is optional

• no need for separating the body, but begin-end block may

be used (and recommended)

if (x > 0)

 y = 0;

else

 y = 1;

if (x > 0)

 begin

 y = 0;

 z = y;

 end

else

 y = 1;

if (x > 0)

 y = 0;

else if (x < 0)

 y = 1;

case statement

• similar to C/C++

• can handle x and z

logic [15:0] data;

case (data)

 16’d0: x = 0;

 16’d1: x = 1;

 default x = 0;

endcase

logic [1:0] data;

case (data)

 2’b0x,2’b00: x =

0;

 2’b10: x = 1;

 default x = 0;

endcase

loops

• six different ways to loop

• forever, repeat(), while(), for(;;), do while(), foreach()

• quite similar to other languages

forever

• forever loops forever

• good for generating clocks

• remember to avoid zero delay hang

initial begin

clock1 <= 0;

clock2 <= 0;

fork

forever #10 clock1 = ~clock1;

#5 forever #10 clock2 = ~clock2;

join

end

repeat

• repeats the body as many times as given parameter

// prints three steps

repeat (3) begin

 $display(”step ”);

end

DFF with control structures

module dff #(parameter data_width_g = 8)

(

input wire clk, // Clock input

input wire rst_n, // Reset input

input wire [data_width_g-1:0] d, // D input

output logic [data_width_g-1:0] q // Q output

);

always_ff @(posedge clk or negedge rst_n)

begin

if (~ rst_n) begin

q <= 0;

end

else begin

q <= d;

end

end

endmodule

Ready!Ready!

How many of these

begins and end do

we absolutely need?

How many of these

begins and end do

we absolutely need?

FURTHER READING

Control structures

unique-if
• unique if

– make a violation report, if there is no matching condition within the if-block

– Ensures that there is no overlap in if-else-if’s (so it can be done parallel)

• unique0 if

– reverse of unique, no violation if no matches, but ensures that there is no

overlap

• priority

– same as unique but allows multiple matches for one variable while requires

that the given if-else-if conditions are evaluated in order

unique if ((a==0) || (a==1)) $display("0 or 1");

else if (a == 2) $display("2");

else if (a == 4) $display("4"); // values 3,5,6,7 cause a

violation report

case with do not cares

• casez handles z’s as do not cares
– use ? in place of z’s in case statements

• casex handles x’s as do not cares
– use x in place of x’s in case statements

logic [7:0] ir;

casez (ir)

 8'b1???????: instruction1(ir);

 8'b01??????: instruction2(ir);

 8'b0001????: instruction3(ir);

 8'b000001??: instruction4(ir);

endcase

case statement with unique

• the same unique, unique0 and priority can be used for

case as for if

– that is to check that at least one of the cases will be covered

– unique and unique0 ensure that no overlap and safe to execute in

parallel

– priority case should match only the first match

for loop

for (int i = 0; i <= 255; i++)

 ...

 begin

 automatic int i;

 for (i = 0, int j = 0; i <= 255; i++)

 ...

 end

while and do while

• both loop as long as the expression is true

• while tests the expression in beginning

• do while tests the expression at the end

while (tempreg) begin

if (tempreg[0])

count++;

tempreg >>= 1;

end

do

$display(“looping\n”);

 #10

while (true);

foreach

• goes through iterable arrays

• can cover over multidimensional arrays too

string words [2] = '{ "hello",

"world" };

int prod [1:8] [1:3];

// print each index and value

foreach(words [j])

$display(j , words[j]);

foreach(prod[k, m])

prod[k][m] = 0;

jumps

• three kind of break, continue, return

• quite self explanatory

• break jumps out of loop, no questions asked

• continue jumps at the end of the loop for another round

(expression is evaluated)

• return jumps out of function, can return a value, must be

correct type

SystemVerilog

Introduction

Tasks and Functions

This slide set is based on IEEE 1800-2012 ©
standard of SV

Subroutines: Tasks and functions

• Tasks and functions are for repeating work
– corresponds to functions in many languages

• Tasks consume time, but cannot return value
– can have delays

– you implement logic inside

– can pass return value through arguments

• Functions do not consume time, but can have return value
– cannot have delays

– non-void one can be operand of expressions

Tasks

• Can have time delays etc. inside

• Can take arguments

• Control is returned when task is completed

– If a task enables other tasks, all need to complete before returning

task mytask1 (output int x, input logic y);

...

endtask

task mytask2;

output x;

input y;

int x;

logic y;

...

endtask

Functions

• Functions should not contain anything that consumes time

– #, ##, always

• As a task can consume time, functions should not call any

tasks

• Functions can call other functions

• Functions can suspend processes

• Main use to produce values for evaluating expressions

Function return value

• Function can return a value

– The type can be explicitly defined

– it can be only a range and sign, but logic is defaulted then

• Function can be void without any return value

• The arguments are passed same way than to tasks

Functions

• return value can be given as return or using built in

implicit variable with the same name as the function

function logic [15:0] myfunc1(int x, int y);

...

 myfunc1 = x*y; // return value assigned

endfunction

function logic [15:0] myfunc2;

input int x;

input int y;

...

 return x*y; // return value through return

endfunction

FURTHER READING

Tasks and Functions

Task arguments

• input – copy value in the beginning

– default

• output – copy value out at the end

• inout – copy value in the beginning and out at the end

• ref – pass value to the task as reference

• data type maybe specified, or inherited, or default to logic

Task execution

• Statements inside task are executed sequentially until

endtask

• task can return at any point

• task is called as it would be “function” by passing desired

values as arguments

– values should meet the declared types

– if argument is output but the calling value is ouput as well, a

compilation error should rise

Argument passing

• Pass by value

– default, the value is copied

• Pass by reference with ref

– does not copy values, only the handle

– especially for large values, structures, arrays

– change to the data will change it outside too

• as no copy is made of the values

– only variable, class property, unpacked structure member, unpacked array

element are legal to pass as by reference

– NO NETS!

• Arguments can have default value with = operator

• Arguments can be bind by the name

• if function/task takes no arguments, () are optional

function int fun(int j = 1, string s = "no");

...

endfunction

fun(2, ”yes”);

fun(.j(2), .s(”yes”));

fun(.s(”yes”)); // 1 gets default value

fun(, ”yes”); // 1 gets default value

Argument passing

SystemVerilog

Introduction

Code structure and Simulation

This slide set is based on IEEE 1800-2012 ©
standard of SV

Packages

• package…endpackage provides method to capsulate

namespaces

• package is imported to design instead of `include

– including a file is simple text replace, which may cause

compilation errors due to overlapping names or produce cryptic

dependencies

– import gives visibility to the package

• accessing package is done through :: operator

Packages

package p;

typedef enum { FALSE, TRUE } bool_t;

endpackage

package q;

typedef enum { ORIGINAL, FALSE } teeth_t;

endpackage

module top1 ;

import p::*;

import q::teeth_t;

teeth_t myteeth;

initial begin

myteeth = q:: FALSE; // OK

myteeth = FALSE; // ERROR: Direct reference to FALSE refers to the

end // FALSE enumeration literal imported from p

endmodule

Interface

• Encapsulates communication between design blocks

• It capsulates several wires / ports inside one item that can be

passed between blocks

• Can have other elements, parameters, constants,

variables, functions, and tasks

– If two modules are connected through the interface item, the

communication may be just a subroutine call of the interface

interface <name> (<port etc. declarations>);

endinterface

Interface example

interface i2c(input logic clock);

 logic sda, scl;

endinterface: i2c

module masterDev(i2c bus);

 always @(posedge clock) bus.scl <= ~bus.scl;

endmodule

module slaveDev(i2c bus);

endmodule

module top;

 logic clk = 0;

 i2c i2c_intf(.clock(clk));

 // connect master&slave to same interface

 masterDev(.bus(i2c_intf));

 slaveDev(.bus(i2c_intf));

endmodule

modport

• modport declares the direction of the logic

connections within an interface

interface spi;

wire clk, cs, mosi, miso;

modport master (input miso, output clk, cs, mosi);

modport slave (output miso, input clk, cs, mosi);

endinterface

module m(spi i);

endmodule

spi spi_intf();

m(.i(spi_intf.master));

Simulation time and precision

• With SystemVerilog you can do functional simulation with timing

incorporated

– timeunit is the measurement unit, s, ms, us, ns, ps, fs

– timeprecision is the degree of accuracy for delays

– or `timescale <time unit> / <time precision>

• Effective as ”if no timeunit/precision given” up until another `timescale is

encountered

• Global time unit is the simulation time unit that is the smallest of the

given time units (same for precision)

– also referred as step

Compilation and Elaboration

• Compilation checks the code syntax and semantic errors

• Elaboration binds the design components together before

the simulation

• Typically ”compilation” == compilation+elaboration

• Namespaces can cause trouble in compilation

FURTHER READING

Code structure and simulation

Packages

• http://blogs.mentor.com/verificationhorizons/blog/2

010/07/13/package-import-versus-include/

http://blogs.mentor.com/verificationhorizons/blog/2010/07/13/package-import-versus-include/
http://blogs.mentor.com/verificationhorizons/blog/2010/07/13/package-import-versus-include/

21. I/O System tasks

• Very similar to C/C++

• fd = $fopen(filename, type);

• $fdisplay(fd, ”text”);

• c = $fgetc(fd);

• ret = $fgets (str, fd); // read line

• logic [7:0] mem[1:256]; $readmemh("mem.data", mem); //

read file of hexadecimals to array

20.

utility

system

tasks

21. I/O System

tasks

22. compiler directives

• similar to C/C++

• notice timescale,

default_nettype,

	Slide 1: SystemVerilog Introduction
	Slide 2: Objective
	Slide 3: Things left out
	Slide 4: SystemVerilog
	Slide 5: SystemVerilog
	Slide 6: About this lecture
	Slide 7: SystemVerilog Introduction
	Slide 8: Comments etc.
	Slide 9: Number literals
	Slide 10: Strings
	Slide 11: SystemVerilog Introduction
	Slide 12: Design elements
	Slide 13: Module
	Slide 14: Hierarchy
	Slide 15: Hierarchy example
	Slide 16: Starting a DFF module
	Slide 17: SystemVerilog Introduction
	Slide 18: Data types and data objects
	Slide 19: Variables
	Slide 20: Nets
	Slide 21: DFF with data types
	Slide 22: Packed arrays
	Slide 23: Arrays
	Slide 24: Arrays
	Slide 25: Constants and parameters
	Slide 26: Parameter example
	Slide 27: DFF with parameterized arrays
	Slide 28: Further reading
	Slide 29
	Slide 30: Integers
	Slide 31: Other types
	Slide 32: Other types
	Slide 33: Scope and lifetime
	Slide 34: Casting
	Slide 35: Aggregation
	Slide 36: Aggregation
	Slide 37: Dynamic arrays
	Slide 38: Array manipulation
	Slide 39: Queue
	Slide 40: Queue methods
	Slide 41: SystemVerilog Introduction
	Slide 42: Assignments
	Slide 43: Assignments
	Slide 44: Continuous assignment
	Slide 45: Continuous assignment example
	Slide 46: Procedural assignments
	Slide 47: Blocking procedural assignments
	Slide 48: Non-blocking procedural assignments
	Slide 49: Blocking and non-blocking
	Slide 50: Assignment summary
	Slide 51: DFF with continuous assignment?
	Slide 52: Assignment extension and truncation
	Slide 53: Extension and truncation example
	Slide 54: Further reading
	Slide 55: Procedural continous assignment
	Slide 56: Assignment patterns
	Slide 57: Array concatenation and alias
	Slide 58: Operators
	Slide 59: Operators in general
	Slide 60
	Slide 61
	Slide 62: Further reading
	Slide 63: Operators in general
	Slide 64: Predecense
	Slide 65: SystemVerilog Introduction
	Slide 66: Procedures
	Slide 67: Procedures
	Slide 68: Initial, always, final
	Slide 69: Initial
	Slide 70: always*
	Slide 71: always
	Slide 72: always_comb
	Slide 73: always_latch
	Slide 74: always_ff
	Slide 75: DFF with always procedure
	Slide 76: Further reading
	Slide 77: final
	Slide 78: Blocks
	Slide 79: begin–end
	Slide 80: Initial procedure with begin-end
	Slide 81: fork-join
	Slide 82: fork clock example
	Slide 83: DFF with begin-end block
	Slide 84: Timing control
	Slide 85: Procedural timing control
	Slide 86: delay control #
	Slide 87: event control @
	Slide 88: event control @ examples
	Slide 89: DFF with event control
	Slide 90: Further reading
	Slide 91: events in fork join
	Slide 92: Event or -operator
	Slide 93: @*
	Slide 94: conditional events - iff
	Slide 95: sequence events ##1
	Slide 96: wait or level sensitive
	Slide 97: level sensitive sequence control
	Slide 98: repeat
	Slide 99: intra-assignment
	Slide 100: Process and process control
	Slide 101: Semaphores
	Slide 102: mailboxes
	Slide 103: mailboxes
	Slide 104: Named event
	Slide 105: Control structures
	Slide 106: Conditional if – else
	Slide 107: case statement
	Slide 108: loops
	Slide 109: forever
	Slide 110: repeat
	Slide 111: DFF with control structures
	Slide 112: Further reading
	Slide 113: unique-if
	Slide 114: case with do not cares
	Slide 115: case statement with unique
	Slide 116: for loop
	Slide 117: while and do while
	Slide 118: foreach
	Slide 119: jumps
	Slide 120: SystemVerilog Introduction
	Slide 121: Subroutines: Tasks and functions
	Slide 122: Tasks
	Slide 123: Functions
	Slide 124: Function return value
	Slide 125: Functions
	Slide 126: Further reading
	Slide 127: Task arguments
	Slide 128: Task execution
	Slide 129: Argument passing
	Slide 130: Argument passing
	Slide 131: SystemVerilog Introduction
	Slide 132: Packages
	Slide 133: Packages
	Slide 134: Interface
	Slide 135: Interface example
	Slide 136: modport
	Slide 137: Simulation time and precision
	Slide 138: Compilation and Elaboration
	Slide 139: Further reading
	Slide 140: Packages
	Slide 141: 21. I/O System tasks
	Slide 142: 20. utility system tasks
	Slide 143: 21. I/O System tasks
	Slide 144: 22. compiler directives

