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‣ Doctoral Researcher @SoC Hub Research Centre.
‣ Worked professionally with RISC-V system design since 2020.

‣ Research focus on hardware architectures for embedded real-
time systems, specifically:
• Predictable computer architecture,
• Optimization of interrupt-driven systems,
• Hardware support of operating system functions.

‣ Publications: https://orcid.org/0000-0003-3533-9832
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Outline

‣ Computing Fundamentals

‣ Real Processors

‣ Introduction to System-on-Chips (SoC)
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Computing Fundamentals
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Motivation

‣ Why do we want to compute things?

‣ Many levels to consider; optimal 
solutions require awareness of all.

‣ Course goal: To understand how 
computing systems are built across 
multiple abstraction levels.

2026-02-04 | 5/50



What is a “Complete” Computer? (1/2)

‣ Fundamentally, any computable 
algorithm can be computed on a 
Turing Machine.

‣ … but only given infinite memory, 

time and energy.
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What is a “Complete” Computer? (2/2)

‣ Many things are Turing-complete 
even unintentionally1, including:
• Microsoft Excel,
• Habbo Hotel,
• The printf format string,
• x86's MOV instruction.

1https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_
completeness
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Constraints (1/2)

‣ Real systems do not have infinite memory, time, or energy.

‣ The constraints of a given system should define how it is 
designed and specialized.
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Constraints (2/2)

‣ For example,
• Battery-powered systems are inherently energy-constrained.
• Real-time systems are inherently time-constrained.

– E.g., video streaming for 4K @ 30 FPS implies an explicit 
time-constraint for processing.

• Embedded systems are often memory-constrained in addition 
to being energy-constrained.
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The Instruction-Set Processor (1/2)

‣ A.K.A. the Central Processing Unit (CPU).

‣ The simplest and most ubiqutous 
implementation of a “full computer”.

‣ Fundamantally a Finite-State 
Machine (FSM).
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The Instruction-Set Processor (2/2)

An abstract processor consists of:

‣ An architectural state.
• stored in registers

• programmer-visible
‣ An interface to read instructions from 

from memory in a given address.
‣ An interface to access data in memory at 

a given address.
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Types of Registers (1/3)

General-purpose registers (GPRs).
‣ CPU-internal, holds operands of CPU instructions.
‣ Hardware is general-purpose, but programming conventions 

dedicate certain GPRs to special functions.
• RISC-V Example: GPR x2  holds the stack pointer ( sp )

‣ Can be used directly by programmer/compiler.
• Example:

1

2

add x3, x1, x2

bne x6, x7, 0x1000
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Types of Registers (2/3)

Special-purpose registers
‣ CPU-internal, holds machine state information, among others.

• RISC-V: Control and status registers (CSRs)
• Accessible through dedicated csr instructions.

– Example:

1

2

csrw mtvec, x5

csrci mstatus, 8
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Types of Registers (3/3)

Memory-mapped registers
‣ External to CPU, common interface to peripherals, accelerators.
‣ Accessed through memory operations.

• Example:

1

2

3

  li t0, 0x0380

  li t1, 0x80000000

  sw t1, 0(t0)
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Instruction-Set Architecture (ISA) (1/2)

‣ The specification of operations that a 
processor architecture supports.

‣ Reduced or Complex (RISC or CISC)
• RISC trade-off: program complexity
• CISC trade-off: hardware complexity
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Instruction-Set Architecture (ISA) (2/2)

Instructions may:

‣ Modify the architectural state.
• E.g., multiply two internal operands

‣ Access memory.
• Load or Store

‣ Alter program flow.
• Conditionally: Branch

• Unconditionally: Jump

2026-02-04 | 16/50



Architecture vs. Microarchitecture (1/3)

‣ Assume the execution of an instruction 𝐼  transforms the archi
tectural processor state from 𝐴𝑆 → 𝐴𝑆′.
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Architecture vs. Microarchitecture (2/3)

‣ In single-cycle microarchitectures, this transition always com
pletes within one clock cycle with no intermediate states.
• All instructions have identical execution time.
• Longest instruction defines max. clock frequency.
• Cycles-per-instruction (CPI) = 1, but clock cycle is very long.
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Architecture vs. Microarchitecture (3/3)

‣ Multi-cycle architectures allow for microarchitectural inter
mediate states.
• I.e., 𝐴𝑆 → 𝐴𝑆 +𝑀𝑆1 → 𝐴𝑆 +𝑀𝑆2 → 𝐴𝑆 +𝑀𝑆𝑛 → 𝐴𝑆′

• Microarchitectural states are not programmer-visible.
• Instructions can have a varied execution times.
• Longest combinational path defines max. clock frequency.
• CPI > 1, but clock cycle is short.
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Single-Cycle Microarchitecture
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Multi-Cycle Microarchitecture
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Pipelined Microarchitecture
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Textbook RISC Microarchitecture [1]
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A Better* RISC Microarchitecture [1]
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Advanced Microarchitectures (1/2)

‣ Deeper pipelines
• 20+ stages feasible in big CPUs.
• Usability depends on branch prediction.

‣ Multi-issue execution
• Issue & execute multiple instructions from single stream.
• More data depencences, needs more involved scheduling.

– Statically by compiler: VLIW
– Dynamically by hardware

2026-02-04 | 25/50



Advanced Microarchitectures (2/2)

‣ Out-of-Order (OoO) execution
• Instructions can be executed OoO, retired in-order to preserve 

sequential program semantics.
• Internally implemented as dataflow processors.

‣ Out of scope here, but an excellent lecture series by Prof. Onur 
Mutlu from ETH Zürich covering these and much more is avail
able here: https://www.youtube.com/watch?v=ubhxKNlOlRg&
list=PL5Q2soXY2Zi9Eo29LMgKVcaydS7V1zZW3
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Real Processors
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SERV — The SErial Risc-V2

‣ Smallest RISC-V in the world.
‣ Bit-serial for extreme area saving.
‣ May look like a toy, but there is 

genuine demand for tiny CPUs.
• Recall: Slide 8 – Constraints

‣ Featured in Springer Nature [2] as 
the first full RISC-V implemented 
with flexible electronics.

2https://github.com/olofk/serv
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Ibex

‣ Very popular open-source3 
project, used on this course.

‣ Lot of microarchitecture para
meters supported.

‣ Performance comparable to 
low-end Arm CPUs.

‣ Area: ~15–60 kGE
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3https://github.com/lowRISC/ibex
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CVA6 and Xuantie C910 [3]

‣ Application-class CPUs

‣ CVA6: 6 stages
• Area: 2282 kGE
• CM/MHz: 2.19
• 𝐹max: 1.3 GHz

‣ C910: 12 stages
• Area: 3992 kGE
• CM/MHz: 4.86
• 𝐹max: 1.7 GHz
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System-on-Chips (SoCs)
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Building a Usable Computing System (1/9)
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Building a Usable Computing System (2/9)
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Building a Usable Computing System (3/9)
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Building a Usable Computing System (4/9)
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Building a Usable Computing System (5/9)
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Building a Usable Computing System (6/9)
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Building a Usable Computing System (7/9)
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Building a Usable Computing System (8/9)
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Building a Usable Computing System (9/9)
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Definition – System-on-Chip (SoC)

‣ “An integrated circuit that combines most or all key components 
of a computer or electronic system onto a single microchip.”4

4https://en.wikipedia.org/wiki/System_on_a_chip
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From MCU to SoC (1/2)

‣ Technically, microcontrollers (MCUs) 
are very simple “SoCs”.

‣ Example: Atmega328p [4]
• One 8-bit CPU.
• Some on-chip memory (inc. NVM).
• Some I/O and timers.

‣ SW complexity: reasonable.
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From MCU to SoC (2/2)

‣ However, “SoC” more commonly 
means something like this:

‣ Example: NXP iMX.8
• 2 × Appliaction CPU clusters.
• Dedicated subsystems for video, 

audio, graphics, connectivity…
• More small CPUs.
• A lot of I/O.

‣ SW complexity: dumpster fire [5].
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Procuring Intellectual Property (IP) (1/2)

‣ Reinventing the wheel is not good business.
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Procuring Intellectual Property (IP) (2/2)

‣ This is why companies source IP from 3rd parties.
• Traditionally: commercial vendors like Arm, Arteris, etc.
• New trend: open-source IP

– Common Modules
– CPU Cores
– AXI Interconnects
– and many more!
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Summary

‣ CPUs are the fundamental building blocks of computer systems.
• Available in many shapes and sizes.

‣ The performance of SoCs comes from creating a heteroge

neous, application-specific set of computation capabilies.

‣ Don’t reinvent the wheel. Source non-critical IP from somewhere 
else, focus on developing the differentiating factors in your 
system.
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Thank you!
Questions?
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