
Computer Architecture for
System-on-Chip (SoC) Design

Antti Nurmi
Tampere University
antti.nurmi@tuni.fi

whoami

‣ Doctoral Researcher @SoC Hub Research Centre.
‣ Worked professionally with RISC-V system design since 2020.

‣ Research focus on hardware architectures for embedded real-
time systems, specifically:
• Predictable computer architecture,
• Optimization of interrupt-driven systems,
• Hardware support of operating system functions.

‣ Publications: https://orcid.org/0000-0003-3533-9832

2026-02-04 | 2/50

https://orcid.org/0000-0003-3533-9832

Outline

‣ Computing Fundamentals

‣ Real Processors

‣ Introduction to System-on-Chips (SoC)

2026-02-04 | 3/50

Computing Fundamentals

2026-02-04 | 4/50

Motivation

‣ Why do we want to compute things?

‣ Many levels to consider; optimal
solutions require awareness of all.

‣ Course goal: To understand how
computing systems are built across
multiple abstraction levels.

2026-02-04 | 5/50

What is a “Complete” Computer? (1/2)

‣ Fundamentally, any computable
algorithm can be computed on a
Turing Machine.

‣ … but only given infinite memory,

time and energy.

2026-02-04 | 6/50

What is a “Complete” Computer? (2/2)

‣ Many things are Turing-complete
even unintentionally1, including:
• Microsoft Excel,
• Habbo Hotel,
• The printf format string,
• x86's MOV instruction.

1https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_
completeness

2026-02-04 | 7/50

https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_completeness

Constraints (1/2)

‣ Real systems do not have infinite memory, time, or energy.

‣ The constraints of a given system should define how it is
designed and specialized.

2026-02-04 | 8/50

Constraints (2/2)

‣ For example,
• Battery-powered systems are inherently energy-constrained.
• Real-time systems are inherently time-constrained.

– E.g., video streaming for 4K @ 30 FPS implies an explicit
time-constraint for processing.

• Embedded systems are often memory-constrained in addition
to being energy-constrained.

2026-02-04 | 9/50

The Instruction-Set Processor (1/2)

‣ A.K.A. the Central Processing Unit (CPU).

‣ The simplest and most ubiqutous
implementation of a “full computer”.

‣ Fundamantally a Finite-State
Machine (FSM).

2026-02-04 | 10/50

The Instruction-Set Processor (2/2)

An abstract processor consists of:

‣ An architectural state.
• stored in registers

• programmer-visible
‣ An interface to read instructions from

from memory in a given address.
‣ An interface to access data in memory at

a given address.

2026-02-04 | 11/50

Types of Registers (1/3)

General-purpose registers (GPRs).
‣ CPU-internal, holds operands of CPU instructions.
‣ Hardware is general-purpose, but programming conventions

dedicate certain GPRs to special functions.
• RISC-V Example: GPR x2 holds the stack pointer (sp)

‣ Can be used directly by programmer/compiler.
• Example:

1

2

add x3, x1, x2

bne x6, x7, 0x1000

2026-02-04 | 12/50

Types of Registers (2/3)

Special-purpose registers
‣ CPU-internal, holds machine state information, among others.

• RISC-V: Control and status registers (CSRs)
• Accessible through dedicated csr instructions.

– Example:

1

2

csrw mtvec, x5

csrci mstatus, 8

2026-02-04 | 13/50

Types of Registers (3/3)

Memory-mapped registers
‣ External to CPU, common interface to peripherals, accelerators.
‣ Accessed through memory operations.

• Example:

1

2

3

 li t0, 0x0380

 li t1, 0x80000000

 sw t1, 0(t0)

2026-02-04 | 14/50

Instruction-Set Architecture (ISA) (1/2)

‣ The specification of operations that a
processor architecture supports.

‣ Reduced or Complex (RISC or CISC)
• RISC trade-off: program complexity
• CISC trade-off: hardware complexity

2026-02-04 | 15/50

Instruction-Set Architecture (ISA) (2/2)

Instructions may:

‣ Modify the architectural state.
• E.g., multiply two internal operands

‣ Access memory.
• Load or Store

‣ Alter program flow.
• Conditionally: Branch

• Unconditionally: Jump

2026-02-04 | 16/50

Architecture vs. Microarchitecture (1/3)

‣ Assume the execution of an instruction 𝐼 transforms the archi
tectural processor state from 𝐴𝑆 → 𝐴𝑆′.

2026-02-04 | 17/50

Architecture vs. Microarchitecture (2/3)

‣ In single-cycle microarchitectures, this transition always com
pletes within one clock cycle with no intermediate states.
• All instructions have identical execution time.
• Longest instruction defines max. clock frequency.
• Cycles-per-instruction (CPI) = 1, but clock cycle is very long.

2026-02-04 | 18/50

Architecture vs. Microarchitecture (3/3)

‣ Multi-cycle architectures allow for microarchitectural inter
mediate states.
• I.e., 𝐴𝑆 → 𝐴𝑆 +𝑀𝑆1 → 𝐴𝑆 +𝑀𝑆2 → 𝐴𝑆 +𝑀𝑆𝑛 → 𝐴𝑆′

• Microarchitectural states are not programmer-visible.
• Instructions can have a varied execution times.
• Longest combinational path defines max. clock frequency.
• CPI > 1, but clock cycle is short.

2026-02-04 | 19/50

Single-Cycle Microarchitecture

2026-02-04 | 20/50

Multi-Cycle Microarchitecture

2026-02-04 | 21/50

Pipelined Microarchitecture

2026-02-04 | 22/50

Textbook RISC Microarchitecture [1]

2026-02-04 | 23/50

A Better* RISC Microarchitecture [1]

2026-02-04 | 24/50

Advanced Microarchitectures (1/2)

‣ Deeper pipelines
• 20+ stages feasible in big CPUs.
• Usability depends on branch prediction.

‣ Multi-issue execution
• Issue & execute multiple instructions from single stream.
• More data depencences, needs more involved scheduling.

– Statically by compiler: VLIW
– Dynamically by hardware

2026-02-04 | 25/50

Advanced Microarchitectures (2/2)

‣ Out-of-Order (OoO) execution
• Instructions can be executed OoO, retired in-order to preserve

sequential program semantics.
• Internally implemented as dataflow processors.

‣ Out of scope here, but an excellent lecture series by Prof. Onur
Mutlu from ETH Zürich covering these and much more is avail
able here: https://www.youtube.com/watch?v=ubhxKNlOlRg&
list=PL5Q2soXY2Zi9Eo29LMgKVcaydS7V1zZW3

2026-02-04 | 26/50

https://www.youtube.com/watch?v=ubhxKNlOlRg&list=PL5Q2soXY2Zi9Eo29LMgKVcaydS7V1zZW3
https://www.youtube.com/watch?v=ubhxKNlOlRg&list=PL5Q2soXY2Zi9Eo29LMgKVcaydS7V1zZW3

Real Processors

2026-02-04 | 27/50

SERV — The SErial Risc-V2

‣ Smallest RISC-V in the world.
‣ Bit-serial for extreme area saving.
‣ May look like a toy, but there is

genuine demand for tiny CPUs.
• Recall: Slide 8 – Constraints

‣ Featured in Springer Nature [2] as
the first full RISC-V implemented
with flexible electronics.

2https://github.com/olofk/serv
2026-02-04 | 28/50

https://github.com/olofk/serv

Ibex

‣ Very popular open-source3
project, used on this course.

‣ Lot of microarchitecture para
meters supported.

‣ Performance comparable to
low-end Arm CPUs.

‣ Area: ~15–60 kGE

Ibex Core

Optional feature
PMP Check

D
a

ta
 M

e
m

o
ry

 In
te

rfa
c
e

PC

Prefetch

Buffer

ICache
P

M
P

 C
h

e
c
k

Imm

Reg

PC

Fwd

LSU

WritebackInstruction Fetch Decode and Execute

In
s
tru

c
tio

n
 M

e
m

o
ry

 In
te

rfa
c
e

Register File

ALU

Mul/Div

debug_req_i

CSRs

Decoder

Execute

Compressed

Instruction Decoder

Controller

Configuration chooses

ICache or Prefetch Buffer

3https://github.com/lowRISC/ibex
2026-02-04 | 29/50

https://github.com/lowRISC/ibex

CVA6 and Xuantie C910 [3]

‣ Application-class CPUs

‣ CVA6: 6 stages
• Area: 2282 kGE
• CM/MHz: 2.19
• 𝐹max: 1.3 GHz

‣ C910: 12 stages
• Area: 3992 kGE
• CM/MHz: 4.86
• 𝐹max: 1.7 GHz

2026-02-04 | 30/50

System-on-Chips (SoCs)

2026-02-04 | 31/50

Building a Usable Computing System (1/9)

2026-02-04 | 32/50

Building a Usable Computing System (2/9)

2026-02-04 | 33/50

Building a Usable Computing System (3/9)

2026-02-04 | 34/50

Building a Usable Computing System (4/9)

2026-02-04 | 35/50

Building a Usable Computing System (5/9)

2026-02-04 | 36/50

Building a Usable Computing System (6/9)

2026-02-04 | 37/50

Building a Usable Computing System (7/9)

2026-02-04 | 38/50

Building a Usable Computing System (8/9)

2026-02-04 | 39/50

Building a Usable Computing System (9/9)

2026-02-04 | 40/50

Definition – System-on-Chip (SoC)

‣ “An integrated circuit that combines most or all key components
of a computer or electronic system onto a single microchip.”4

4https://en.wikipedia.org/wiki/System_on_a_chip
2026-02-04 | 41/50

https://en.wikipedia.org/wiki/System_on_a_chip

From MCU to SoC (1/2)

‣ Technically, microcontrollers (MCUs)
are very simple “SoCs”.

‣ Example: Atmega328p [4]
• One 8-bit CPU.
• Some on-chip memory (inc. NVM).
• Some I/O and timers.

‣ SW complexity: reasonable.

2026-02-04 | 42/50

From MCU to SoC (2/2)

‣ However, “SoC” more commonly
means something like this:

‣ Example: NXP iMX.8
• 2 × Appliaction CPU clusters.
• Dedicated subsystems for video,

audio, graphics, connectivity…
• More small CPUs.
• A lot of I/O.

‣ SW complexity: dumpster fire [5].

2026-02-04 | 43/50

Procuring Intellectual Property (IP) (1/2)

‣ Reinventing the wheel is not good business.

2026-02-04 | 44/50

Procuring Intellectual Property (IP) (2/2)

‣ This is why companies source IP from 3rd parties.
• Traditionally: commercial vendors like Arm, Arteris, etc.
• New trend: open-source IP

– Common Modules
– CPU Cores
– AXI Interconnects
– and many more!

2026-02-04 | 45/50

https://github.com/pulp-platform/common_cells
https://github.com/openhwgroup/core-v-cores
https://github.com/pulp-platform/axi

Summary

‣ CPUs are the fundamental building blocks of computer systems.
• Available in many shapes and sizes.

‣ The performance of SoCs comes from creating a heteroge

neous, application-specific set of computation capabilies.

‣ Don’t reinvent the wheel. Source non-critical IP from somewhere
else, focus on developing the differentiating factors in your
system.

2026-02-04 | 46/50

References (1/3)

[1] M. Schoeberl, “Wildcat: Educational RISC-V Microprocessors,”
in Architecture of Computing Systems: 38th International

Conference, ARCS 2025, Kiel, Germany, April 22–24, 2025,

Proceedings, Kiel, Germany: Springer-Verlag, 2025, pp. 189–
202. doi: 10.1007/978-3-032-03281-2_13.

[2] E. Ozer et al., “Bendable non-silicon RISC-V microprocessor,”
Nature, vol. 634, no. 8033, pp. 341–346, Oct. 2024, doi:
10.1038/s41586-024-07976-y.

[3] Z. Fu et al., “Ramping Up Open-Source RISC-V Cores: As
sessing the Energy Efficiency of Superscalar, Out-of-Order

2026-02-04 | 47/50

https://doi.org/10.1007/978-3-032-03281-2_13
https://doi.org/10.1038/s41586-024-07976-y

References (2/3)

Execution,” in Proceedings of the 22nd ACM International

Conference on Computing Frontiers, in CF '25.: Associ
ation for Computing Machinery, 2025, pp. 12–20. doi:
10.1145/3719276.3725186.

[4] Microchip Technology Inc., “ATmega328P Automotive Mi
crocontrollers ATmel-7810 Datasheet.” Chandler, AZ, USA,
2015. [Online]. Available: https://ww1.microchip.com/
downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcont
rollers-ATmega328P_Datasheet.pdf

2026-02-04 | 48/50

https://doi.org/10.1145/3719276.3725186
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

References (3/3)

[5] A. Baumann et al., “The multikernel: a new OS architecture
for scalable multicore systems,” in Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles,
in SOSP '09. Big Sky, Montana, USA: Association for Computing
Machinery, 2009, pp. 29–44. doi: 10.1145/1629575.1629579.

2026-02-04 | 49/50

https://doi.org/10.1145/1629575.1629579

Thank you!
Questions?

2026-02-04 | 50/50

