f

=[] Tampereen yliopisto
Tampere University

Computer Architecture for
System-on-Chip (SoC) Design

Antti Nurmi
Tampere University
antti.nurmi@tuni.fi

whoami

> Doctoral Researcher @SoC Hub Research Centre.
> Worked professionally with RISC-V system design since 2020.

> Research focus on hardware architectures for embedded real-
time systems, specifically:
* Predictable computer architecture,
+ Optimization of interrupt-driven systems,
« Hardware support of operating system functions.

> Publications: https://orcid.org/0000-0003-3533-9832

2026-02-04 | 2/50

https://orcid.org/0000-0003-3533-9832

Outline
» Computing Fundamentals
» Real Processors

» Introduction to System-on-Chips (SoC)

2026-02-04 | 3/50

Computing Fundamentals

Motivation

» Why do we want to compute things?

> Many levels to consider; optimal
solutions require awareness of all.

> Course goal: To understand how
computing systems are built across
multiple abstraction levels.

Problem

Algorithm

Program/Language

System Software

SW/HW Interface

Microarchitecture

Logic

Devices

Electrons

2026-02-04 | 5/50

What is a “Complete” Computer? (1/2)

a)
» Fundamentally, any computable [Combinational Logic
algorithm can be computed on a
Turing Machine. Finite-State Machine /
Pushdown Automaton /
> ... but only given infinite memory, _ Turing Machine)

time and energy.

2026-02-04 | 6/50

What is a “Complete” Computer? (2/2)

> Many things are Turing-complete
even unintentionally’, including:
* Microsoft Excel,
* Habbo Hotel,
* The printf format string,
* x86's MOV instruction.

'https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_
completeness
2026-02-04 | 7/50

https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness#Unintentional_Turing_completeness

Constraints (1/2)

» Real systems do not have infinite memory, time, or energy.

> The constraints of a given system should define how it is
designed and specialized.

2026-02-04 | 8/50

Constraints (2/2)

» For example,
* Battery-powered systems are inherently energy-constrained.
+ Real-time systems are inherently time-constrained.
- E.g., video streaming for 4K @ 30 FPS implies an explicit
time-constraint for processing.
* Embedded systems are often memory-constrained in addition

to being energy-constrained.

2026-02-04 | 9/50

The Instruction-Set Processor (1/2)
> A.K.A. the Central Processing Unit (CPU).

Instruction
Interface

» The simplest and most ubiqutous
implementation of a “full computer”.

» Fundamantally a Finite-State -

Machine (FSM). State
/\

!

Data
Interface

2026-02-04 | 10/50

The Instruction-Set Processor (2/2)

An abstract processor consists of:

Instruction
Interface

> An architectural state.
* stored in registers

* programmer-visible CPU
> An interface to read instructions from ﬁ
from memory in a given address. State
> An interface to access data in memory at /\
a given address. i

Data
Interface

2026-02-04 | 11/50

Types of Registers (1/3)

General-purpose registers (GPRs).

» CPU-internal, holds operands of CPU instructions.

» Hardware is general-purpose, but programming conventions
dedicate certain GPRs to special functions.
+ RISC-V Example: GPR x2 holds the stack pointer (sp)

» Can be used directly by programmer/compiler.
« Example:

1 add x3, x1, x2
2 bne x6, x7, 0x1000

2026-02-04 | 12/50

Types of Registers (2/3)

Special-purpose registers
» CPU-internal, holds machine state information, among others.
+ RISC-V: Control and status registers (CSRs)
* Accessible through dedicated csr instructions.
- Example:

1 csrw mtvec, x5
2 csrci mstatus, 8

2026-02-04 | 13/50

Types of Registers (3/3)

Memory-mapped registers
> External to CPU, common interface to peripherals, accelerators.
> Accessed through memory operations.

« Example:

1 li t0, 0x0380
2 lit1, 0x80000000
3 swt1, 0(t0)

2026-02-04 | 14/50

Instruction-Set Architecture (ISA) (1/2)

> The specification of operations that a

processor architecture supports.
> Reduced or Complex (RISC or CISC) ‘
+ RISC trade-off: program complexity

« CISC trade-off: hardware complexity RIS C ©

2026-02-04 | 15/50

Instruction-Set Architecture (ISA) (2/2)

Instructions may:

> Modify the architectural state.

* E.g., multiply two internal operands
> Access memory.

* Load or Store
> Alter program flow.

+ Conditionally: Branch

* Unconditionally: Jump

2026-02-04 | 16/50

Architecture vs. Microarchitecture (1/3)

» Assume the execution of an instruction I transforms the archi-
tectural processor state from AS — AS’.

2026-02-04 | 17/50

Architecture vs. Microarchitecture (2/3)

> In single-cycle microarchitectures, this transition always com-
pletes within one clock cycle with no intermediate states.
+ All instructions have identical execution time.
* Longest instruction defines max. clock frequency.
* Cycles-per-instruction (CPI) = 1, but clock cycle is very long.

2026-02-04 | 18/50

Architecture vs. Microarchitecture (3/3)

> Multi-cycle architectures allow for microarchitectural inter-
mediate states.
* e, AS > AS+MS, - AS+ MS, - AS+ MS, — AS’
* Microarchitectural states are not programmer-visible.
Instructions can have a varied execution times.
Longest combinational path defines max. clock frequency.
CPI> 1, but clock cycle is short.

2026-02-04 | 19/50

Single-Cycle Microarchitecture

AS,

AS,

IPC=1

AS,

» Time

2026-02-04 | 20/50

Multi-Cycle Microarchitecture

ASg IPC = 0.25

. ID, |EX, [WB, I AS,
. ID, [EX1[WBL I
. ID. |EX_ |WB,

L L L -
I > Time

2026-02-04 | 21/50

Pipelined Microarchitecture
IPC=0.25-1

» Time

2026-02-04 | 22/50

Textbook RISC Microarchitecture [1]

j_. [-~

ALU D$ —»
> j_. LA LA
4 —P

L
PC > IR
N N

LA A LA

|
|
l
|

7

Fig. 1. A textbook style 5-stages RISC-V processor pipeline.

2026-02-04 | 23/50

A Better* RISC Microarchitecture [1]

RF

w»

o
i

A

D$

—>

D

jj'

=

Fig. 2.

A 3-stage RISC-V processor pipeline.

2026-02-04 | 24/50

Advanced Microarchitectures (1/2)

» Deeper pipelines
*+ 20+ stages feasible in big CPUs.
* Usability depends on branch prediction.

> Multi-issue execution
+ Issue & execute multiple instructions from single stream.
* More data depencences, needs more involved scheduling.
- Statically by compiler: VLIW
- Dynamically by hardware

2026-02-04 | 25/50

Advanced Microarchitectures (2/2)

» Out-of-Order (O00) execution
+ Instructions can be executed O0Q, retired in-order to preserve
sequential program semantics.
* Internally implemented as dataflow processors.

> Out of scope here, but an excellent lecture series by Prof. Onur
Mutlu from ETH Zurich covering these and much more is avail-
able here: https://www.youtube.com/watch?v=ubhxKNIOIRg&
list=PL5Q2s0XY2Zi9E029LMgKVcaydS7V1zZW3

2026-02-04 | 26/50

https://www.youtube.com/watch?v=ubhxKNlOlRg&list=PL5Q2soXY2Zi9Eo29LMgKVcaydS7V1zZW3
https://www.youtube.com/watch?v=ubhxKNlOlRg&list=PL5Q2soXY2Zi9Eo29LMgKVcaydS7V1zZW3

Real Processors

SERV — The SErial Risc-V?

» Smallest RISC-V in the world. @ rorowe 3 i

> Bit-serial for extreme area saving. SERv

> May look like a toy, but there is s BT
genuine demand for tiny CPUs.

In fact, the award-winning SERV is the world's smallest RISC-V CPU.

* Recall; Slide 8 - Constraints e o e o e i of

How small is it then? Synthesizing the latest version of SERV in its.
most minimal form, yields the following results for some popular

> Featured in Springer Nature [2] as P e s 03 e

the first full RISC-V implemented

198 LUT 239 LUT 125 LUT 2.1kGE

with flexible electronics.

Zhttps://github.com/olofk/serv
2026-02-04 | 28/50

https://github.com/olofk/serv

Ibex

» Very popular open-source®
project, used on this course. Ibex Core

> Lot of microarchitecture para-
meters supported.

aoeyaU| KloWaW Bleq

El
2
=
S
2
S
=
o5
3
3
<
F3
ko
ES
)
&
@

» Performance comparable to
low-end Arm CPUs.

» Area: ~15-60 kGE

*https://github.com/lowRISC/ibex
2026-02-04 | 29/50

https://github.com/lowRISC/ibex

CVA6 and Xuantie C910 [3]

> Application-class CPUs

» CVAG6: 6 stages
* Area: 2282 kGE
*« CM/MHz: 2.19
« E..:1.3GHz

max*

» C910: 12 stages
* Area: 3992 kGE
+ CM/MHz: 4.86
« FE...1.7 GHz

max*

S9VAD < 9VAD

0169 < S9VAD

2026-02-04 | 30/50

System-on-Chips (SoCs)

Building a Usable Computing System (1/9)

CPU

Instr. l i Data

2026-02-04 | 32/50

Building a Usable Computing System (2/9)

CPU

Instr. l i Data

Connectivity

Memory

2026-02-04 | 33/50

Building a Usable Computing System (3/9)

A
JTAG

Debugger

CPU

T] Jom

Connectivity

l

Memory

2026-02-04 | 34/50

Building a Usable Computing System (4/9)

A
JTAG
110
Debugger cPy Peripherals
T l Instr. l l Data T
Connectivity
Memory

2026-02-04 | 35/50

Building a Usable Computing System (5/9)

A
JTAG
110
Debugger cPy Peripherals
T l Instr. l l Data T
Connectivity
NVM Memory

2026-02-04 | 36/50

Building a Usable Computing System (6/9)

A

JTAG

Debugger

CPU

T] Jom

I[e]
Peripherals

f

Connectivity
Clk, Pwr,
NVM Memory Timers Rst
Control

2026-02-04 | 37/50

Building a Usable Computing System (7/9)

A

A

A
JTAG

DRAM
Controller

Debugger

CPU

1

Application
CPU

I$|D$

1w low] |

I[e]
Peripherals

f

Connectivity
Clk, Pwr,
NVM Memory Timers Rst
Control

2026-02-04 | 38/50

Building a Usable Computing System (8/9)

A

A

A
JTAG

DRAM
Controller

Debugger

CPU

1

Application
CPU

I$|D$

1w low] |

I[e]
Peripherals

f

Connectivity

|

il

L

1

NVM

Memory

Clk, Pwr,
Timers Rst
Control

Memory-
Mapped
Accelerators

2026-02-04 | 39/50

Building a Usable Computing System (9/9)

A

A 4

JTAG

A

DRAM
Controller

Debugger

CPU

1

Application
CPU

s | s

T1 wTow] |

I[e]
Peripherals

f

Connectivity
D2D Clk, Pwr, Memory-
NVM Memory Timers Rst Mapped
Interface
Control | |Accelerators

!

2026-02-04 | 40/50

Definition - System-on-Chip (SoC)

> “An integrated circuit that combines most or all key components
of a computer or electronic system onto a single microchip.”

“https://en.wikipedia.org/wiki/System_on_a_chip
2026-02-04 | 41/50

https://en.wikipedia.org/wiki/System_on_a_chip

From MCU to SoC

> Technically, microcontrollers (MCUs)
are very simple “SoCs".

» Example: Atmega328p [4]
* One 8-bit CPU.
* Some on-chip memory (inc. NVM).
* Some I/O and timers.

» SW complexity: reasonable.

(1/2)

::::::

2026-02-04 | 42/50

From MCU to SoC (2/2)

> However, “SoC” more commonly
means something like this:

> Example: NXP iMX.8
« 2 x Appliaction CPU clusters.
* Dedicated subsystems for video,
audio, graphics, connectivity...
* More small CPUs.
* Alot of I/0.
» SW complexity: dumpster fire [5].

2026-02-04 | 43/50

Procuring Intellectual Property (IP) (1/2)

> Reinventing the wheel is not good business.

2026-02-04 | 44/50

Procuring Intellectual Property (IP) (2/2)

> This is why companies source IP from 3rd parties.
+ Traditionally: commercial vendors like Arm, Arteris, etc.
* New trend: open-source IP
- Common Modules
- CPU Cores
- AXI Interconnects
- and many more!

2026-02-04 | 45/50

https://github.com/pulp-platform/common_cells
https://github.com/openhwgroup/core-v-cores
https://github.com/pulp-platform/axi

Summary

» CPUs are the fundamental building blocks of computer systems.
* Available in many shapes and sizes.

» The performance of SoCs comes from creating a heteroge-
neous, application-specific set of computation capabilies.

» Don't reinvent the wheel. Source non-critical IP from somewhere
else, focus on developing the differentiating factors in your
system.

2026-02-04 | 46/50

References (1/3)

[1] M. Schoeberl, “Wildcat: Educational RISC-V Microprocessors,”
in Architecture of Computing Systems: 38th International
Conference, ARCS 2025, Kiel, Germany, April 22-24, 2025,
Proceedings, Kiel, Germany: Springer-Verlag, 2025, pp. 189-
202. doi: 10.1007/978-3-032-03281-2_13.

[2] E. Ozer et al., “Bendable non-silicon RISC-V microprocessor,”
Nature, vol. 634, no. 8033, pp. 341-346, Oct. 2024, doi:
10.1038/s41586-024-07976-y.

[3] Z. Fu et al., “Ramping Up Open-Source RISC-V Cores: As-
sessing the Energy Efficiency of Superscalar, Out-of-Order

2026-02-04 | 47/50

https://doi.org/10.1007/978-3-032-03281-2_13
https://doi.org/10.1038/s41586-024-07976-y

References (2/3)

[4]

Execution,” in Proceedings of the 22nd ACM International
Conference on Computing Frontiers, in CF '25.: Associ-
ation for Computing Machinery, 2025, pp. 12-20. doi:
10.1145/3719276.3725186.

Microchip Technology Inc., “ATmega328P Automotive Mi-
crocontrollers ATmel-7810 Datasheet.” Chandler, AZ, USA,
2015. [Onlinel. Available: https://ww1.microchip.com/
downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcont
rollers-ATmega328P_Datasheet.pdf

2026-02-04 | 48/50

https://doi.org/10.1145/3719276.3725186
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

References (3/3)

[5] A. Baumann et al., “The multikernel: a new OS architecture
for scalable multicore systems,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles,
in SOSP '09. Big Sky, Montana, USA: Association for Computing
Machinery, 2009, pp. 29-44. doi: 10.1145/1629575.1629579.

2026-02-04 | 49/50

https://doi.org/10.1145/1629575.1629579

Thank you!

Questions?

