
CVA6
Linux bootable 6-stage RISC-V



What, why, who, where?

• 6-stage, single-issue, in-order CPU core
• Implements 64-bit RISC-V instruction set with I, M, A and C 

extensions
• Also implements M, S, U privilege levels to support Unix-like OS 

(=able to boot Linux)
• Main design goal was to reduce critical path
• Open-source alternative to cores like ARM
• By OpenHW Group, non-profit global organization, HQ in Ottawa, 

Canada



HOW?
• Languages:

• About 55% written in Assembly and 
about 25% written in SystemVerilog

• Includes also Python scripts

• Tools used / supported:
• Linux, GCC, core-V-verif (verification), 

riscv-isa-manual (instruction set)

• License:
• Apache-2.0 license

▪ You are allowed to:
• Use the code
• Modify it
• Redistribute
• Patent

▪ Restrictions:
• You need to mark any

modifications
• You must include Apache-2.0 

license
• You must include copyrights, 

patents, trademarks etc. from
source work

Summary from Cloc-tool:



How easy is it to get started?

Are there instructions for "Hello world", are they clear?
- Yes there are, I tried... (2-3h)
- Steps to get it running:

o Clone git
o Install needed programs
o Build the toolchain
o Set environment variables
o Run the simulation

- Given linux commands for every step
- Ready made installation scripts
- Possibility to use different simulators

- Instructions for ASIC and FPGA emulation also
- Problems with pip and naming of some scripts did not match instructions



Results from simulation

• Log files
oAssembly instructions
o Terminal print

• Waveform file also possible



Did you understand the content in this time?

• Some parts from running the simulation 
• Repository is large and there are a lot of content


	Dia 1: CVA6
	Dia 2: What, why, who, where?
	Dia 3: HOW?
	Dia 4: How easy is it to get started?
	Dia 5: Results from simulation
	Dia 6: Did you understand the content in this time?

