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Static Timing Analysis (STA)

® Static timing analysis (STA) is a method of validating the timing performance
of a design by checking all possible paths for timing violations.

® The timing position of input data signals against clock pulses of the
design should be given.

® From this data and the timing characteristics of the chain it is possible to
determine the timing of the arrival of data against clock signal: t,,

® Depending onthe setup and hold times of FFs, it is possible to determine
the required time for the data to appear in the inputs of FFs: t

® The amount of time violation is given by slack =t -t

® For smooth operation, itis necessary that slack >0.



'D Tampere University

Static Timing Analysis (STA)

» Static Timing Analysis (STA) is the effective methodology for verifying the timing
characteristics of a design without the use of test vectors because thousands of
test vectors are required to test all timing paths using logic simulation.

» Key principle behind STA is propagating delays through logic gates by simply
summing signal arrival times with delay time of the cell and finding maximum of
all available arrive times on a net.
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A gate is being processed in STA.

* Arrivaltimes of all inputs are known.

* Delayvalues at the output are
computed using SUM operation that
adds the delay at each input with
input-to-pin delay.

* Once these candidate delays have been found, the MAX operation is applied to
determine the maximum arrival time at the output.

* The arrival time at the input is propagated through the gates at each level till it
reaches the output.
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STA Steps

clock

1. Circuitis broken into timing paths

2. Delay of each path is calculated

a—cC
3. Foreach path delays are checked b - c
against timing constraints dlocki=rd

clock =y
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STA-Timing Paths

® Start point:

B Input ports

B Clock pins of flip-flops

® Endpoints:
B Output ports

B data input pins of flip-flops

a - MUX1.0 -» MUX2.0 - out
a - MUX1.0 -» MUX2.1 - out

b - MUX1.1 - MUX2.0 - out
b - MUX1.1 - MUX2.1 - out
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® Paths which physically exist in a design but are not logic paths. These
paths never get synthesized under any input condition

® |n STA "false path” means a path which user has intentionally set as an
”not-to-be-checked” timing path.

Mux1.0->Mux2.0 & Mux1.1 ->Mux2.1 In PBA (path-based-analysis) actual

are checked in STA by default. The "real” paths are considered for timing
reason is that in GBA (graph based analysis, and in that mode we would not
analysis) delay values are see those (false) paths.
propagated, not the logic values.
o Pas
a— RO = MEXZ B — ot
a —» MUX1.0 » MUX2.1 - out

b —» MUX1.1 » MUX2.0 - out
b—MUX1 1 — MUX2. 1 —out
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Timing Closure Problem
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STA: Terminologies

* Timing Diagram of a Flip-Flop

Setup time (t, ) is the minimum amount of time before the active clock edge of
flip flop, the data input (D) should be held steady.
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STA: Terminologie

* Timing Diagram of a Flip-Flop

D F"— thd

Hold time (t,4) is the minimum amount of time after the active clock edge of
flip flop, the data input (D) should be held steady.
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Propagation delay (t,) is the clock-to-output delay i.e. data input (D) is
available at output (Q) after a t, delay.
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Intuitive Example (Setup/Hold)

* Boarding the bus at 8.00 AM
* Arrival time 7.57 (MUST arrive before departure)
*Setup time is 3 mins

* Bus shouldn’t move until | settle down
*Hold time (2 mins ? )
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PDK (Process Design Kit).

PDK : Set of files to model a fabrication process.

* PDK Files

* Primitive Device Library
» Symbols
* Device Parameters
» Parameterized Cells (PCells)

« Verification Checks
 Design Rule Checking (DRC)
 Layout Versus Schematic (LVS)
» Antenna and Electrical rule check
* Physical Extraction

» Technology data
 Layers, layer names
* Process constraints
* Electrical rules

* Rule files
« LEF (Library Exchange Format)
» Tool dependent rule formats
« Simulation models of primitive
devices
» Transistors (typically SPICE)
» Capacitors
* Resistors
* Inductors

* Design Rule Manual

A user-friendly representation of
the process requirements
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Liberty File

* Liberty file contains timing related information for all the standard cells

and macros
» Setup/ Hold time information
 Rise/Fall transitions « A different liberty file -type is: LVF
« Slew rate, 1/O threshold (Liberty Variance Format).
e Area of cell It is used in more modern

technology nodes.
» Leakage Power 24

» Load Capacitance
« Different liberty files available for different PVT (Process, Voltage, and
Temperature) corners
 NLDM (Non-Linear Delay Model)
» CCS (Composite Current Source Model)
* Will discuss more about PVT corners in later lectures



'D Tampere University

Delay Constraints

* Constraints on maximum delay in combinational logic

Combinational
logic

CLK
|
I§LL
CLK /] tea | 1 -
Q1
D2 signal must be confirmed no later D2 W@O@O@O
than the time required for the setup of . tog ,

FFs, otherwise there will be a violation

of the setup time. tpd E T - (t su + tc—q)
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Checking timing constraints

» The delays of combinational circuits in ICs change at large boundaries,
depending on PVT.

« Maximum delay is obtained in the worst case - slow process, low
voltage, high temperature. Therefore the setup condition should be
checked for the worst case logical delays and FF timing parameters.

« Minimum delay is obtained in the best case - fast process, high voltage,
low temperature, therefore the hold condition should be checked for the
best case logical delays and FF timing parameters.

 In advanced technology nodes, called "temperature inversion” exists.
« Phenomenon causes transistors to be slower in cold temperatures
and faster in hot temperatures.
« S0, max- and min-delay worst cases are technology dependent
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Checking timing constraints

* In a system built on FFs, the data is delivered via a clock
pulse edge and must be set up before the next edge arrives.

* If the data is late, the system will malfunction

* If the data is set up earlier, the time from the moment to
the next edge is wasted

« Synchronization with FFs requires strict coordination of
setup and hold times during clock signal period — in the
period of one rising edge to the next one.
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Ildeal and Real Clock Pulses

* |deal Clock
* Fixed Period
» Constant rise/fall duration
« Simultaneous arrival at the inputs of all FFs/latches.

None of these are met...
» For reliable verification of timing constraints in digital systems, it is
necessary to take into account possible timing distortions of clock signals
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Skew and Latency of Clock Signal

T
< >
Lskew

Edge position
of clock pulse

In a source ) /? w /W

latency
1

® The skew is equal to the maximum difference between the
moments the clock pulse reaches the inputs of different
FFs of the system.

® The latency is the maximum delay from the source of the
clock pulse to the input of FF.
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Clock Jitter

e Jitter is observed as from cycle-to-cycle movement of pulse
edge position or the instability of the pulse over time

T \ T\ T \ )/

_Jl—"?
¥
3
¥
3
_¥ |

\ n T\ /

T
L ! g i ’I

| t
t t
1 (b) 2 3

(a) Ideal case - there is no jitter

(b) absolute jitter: (t,-nT ) and relative jitter: ((t.-t,.)-T)
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Clock Jitter and Skew

* Jitter is observed as from cycle-to-cycle movement of
pulse edge position or the instability of the pulse over

time (Same point) | T
jifter ”
_ T w—
Small Zero
skew skew
* Clock Skew I
« Difference in arrival of i
clock pulse at different
points in an IC.
FF B r
Large Small

skew skew
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Skew impact on setup constraint

CLK
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Setup Slack

D2 Q2
Combinational
logic
CLK
4 T >
CLK ﬂ: L t NNy - Y,
C-q pd u

> tskew
Q1 >d—<
D2 XXX XXX XXX

« Setup slack is the margin by which a timing path meets setup check
requirement.

* If setup slack is positive, it means the timing path meets setup
requirement.

* A negative setup slack means setup violating timing path.
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Skew impact on hold constraint

Combinational logic

CLK

CLK ; f b, NN /)

Q1 )Qf
tc-q_rtcd

D2 AXXKHIKXXXAN

tsl{ew T thnld < tc—q T tcd
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D1 D2 Q2

D Q

D Q

Combinational logic

CLK

CLK
PR tSKEW
CLK_ I toa, AN 7
Qf
tci%tw tskew T thnld < tc—q T tcd
D2 AXKHKXXXAKKIAAXN
- Hold Slack

* The presence and magnitude of hold violation is governed by a
parameter called as hold slack.

« If hold slack is positive, it means there is still some margin
available before it will start violating for hold.

* A negative hold slack means the path is violating hold timing
check by the amount represented by hold slack.
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Trick Question B

« If, by chance, a fabricated design
is found to have a setup violation
e Solution ?
* QOperate the chip at lower
clock speed

 If, by chance, a fabricated design is
found to have a hold violation
« Solution ?
« Throwaway the chip...
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Hold violation mitigation

 Hold violations occur when data changes too soon after the clock
edge, violating the hold time requirement. Fixing hold violations
ensures reliable data capture.
« If a timing path violates for hold, we can do either of the following:
* Increase data path delay
* Buffers/Inverters/Delay cell insertion
» Changing cells from lower VT to higher VT
* Delay Constraints (LVT >>SVT >>HVT ) @
« HVT (Higher Voltage)
* LVT (Lower Voltage)
*SVT (Standard Voltage)
» Decrease clock skew
» Choose a flip-flop with less hold requirement
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Hold violation mitigation

1. ldentify Violations: Use STA tools like (PrimeTime/Tempus) to
locate paths with negative hold slack.

2. Analyze Paths: Check for short data paths or excessive clock

skew.

3. Add Delay Elements: Insert buffers or delay cells to slow down the
data path.

4. Adjust Clock Skew: Optimize the clock tree to balance arrival
times.

5. Re-run STA: Verify fixes by checking for positive hold slack.
6. Validate Design: Ensure fixes don’t introduce new setup violations.
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a 3-stage synchronizers should be used.

Metastability and Synchronizer

synchronizer

/N
N\
META SYNCIN

ASYNCIN
{asynchronous input)

Synchronous.

system

CLOCK
{system clock)

clock
clook_[T\_[A\ /O oek_[D\_[A\ O N OO
D1__J D1_/ —] -
ail__ | Ql__— a1/
Q2 — Q2 — Q2
(left) Q1 can switch in the beginning of first cycle and Q2 FF1 appears in a metastable state, but its output
will write the new value of Q1 in 2nd cycle. (right) FF1 first goes to high, then low state, afterwards low
appears in metastable state, its output increases and state is determined. At the end of #1 cycle, Q1 is
eventually reaches high level. Like in the previous case, Q2 in low state, it switches to high state in cycle #3.

registers accurate data in second cycle
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Distribution and propagation of clock signal

H-Tree for clock distribution

* Htree of clock signal propagation
to ensure minimum skew

Clock signal buffering

* Each degree of clock signal tree
buffering must have the same fan
coefficient so that clock signal
delays should be well balanced.

* Clock Tree Synthesis (CTS) will be
discussed in later lectures

Clock

RS
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Digital Circuits Timing Constraints/Goals

® Achievement of required operating frequency

B Digital circuits are constrained to operate over specific
frequencies

B All separate parts/sub-components of a circuit/design are
constrained to have delay smaller than clock period

® Meeting timing constraints
B Avoiding collision of signals

B Avoiding failure
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Digital Circuits Timing Constraints/Goals

® Achievement of required operating frequency

B Digital circuits are constrained to operate over specific
frequencies

B All separate parts/sub-components of a circuit/design are
constrained to have delay smaller than clock period

® Meeting timing constraints
B Avoiding collision of signals

B Avoiding failure

STA Verifies these goals
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Problem Variability

® Othervariables affect circuit timing, thus need to be considered

during design
B Operating Conditions

@ Process, Voltage, Temperature variations

B Unstable clock frequency (jitter, skew)

@ Instability of clock frequency requires design margin

......

Uncertainties
ML Tech. deviations
5.3;_b|'n tr| [Increase in the
s AL number of

]3-4.@".2;'—3

Design rules

B On-chip variation (OCV)

@ Device/lnterconnect
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Components of Circuit Timing

1
4 >
1 1

® Delay components Teenn Thet

B Cells, Interconnects

® Constrained components

B Clocked registers require
setup/hold, recovery/removal t path = Unee T cel
constraints
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Cell Timing Parameters

Rise transition time (tp)

* The time it takes a driving pin to make a
transition from kV, to (1-k)Vpp value.

Fall transition time (tg)

* The time it takes a driving pin to make a transition
from (1-k)Vpp to kVp value.

* Usually k=0.1 (also possible k=0.2, 0.3, etc)

* 10% to 90% (k=0.1)
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Cell Timing Parameters

Propagation delay low-to-high (rise) (tp.y OF tpR) 0-5Vioo ouT

* Time difference between the input signal
crossing a 0.5V, and the output signal
crossingits 0.5V, when the output signalis
changing from low to high

Propagation delay high-to-low (fall) (tpy; or tpr)

* Time difference between the input signal crossing
a 0.5VDD and the output signal crossing its

0.5VDD when the output signal is changing from
high to low
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Cell Timing Parameters

Setup time (tgy)

* The minimum period in which the input data to
a flip-flop or a latch must be stable before the
active edge of the clock occurs

Hold time (ty)

* The minimum period in which the input data to a
flip-flop or a latch must remain stable after the
active edge of the clock has occurred
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Cell Timing Parameters (only for asynchronous

Set or Reset)
0.5Vbp /
SET (RESET) >

Removal time (tggp) 0.5Vop
CLOCK /\

* The minimum time in which the asynchronous v tREM

Set or Reset pin to a flip-flop or latch must
remain enabled after the active edge of the
clock has occurred

Recovery time (tggc) 0.5Vop
SET (@)_/T/—

* The minimum time in which Set or Reset must be :
e CLOCK N 0.5Vbp

held stable after being de-asserted before next ;q—d; trEC

active edge of the clock occurs
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Required Time

® Required time specifies the time point (interval) at which data is required to
arrive at end point (data is required to be stable after arrival).

B Time point after which data can become unstable (change) is called
earliest required time (hence we have to HOLD the data at the input)

B Time point after which data cannot become unstable (change) is called
latest required time (hence the data computation should be complete
before this point otherwise, setup violations can occur)

® The requirementis set by timing constraints like setup/hold,
removal/recovery, etc.

cycle 1 cycle 2

S

clock

Hold violation will 7
occur here

i

Setup violation

latest will occur here

required time required time
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® Arrival time defines the time interval during which a data signal will
arrive at a path endpoint (after arrival-time signal will be stable).

® Data arrival depend on circuit delay, which vary (depend on
temperature, supply voltage, etc.)

® Minimum delay, early arrival

® Maximum delay, late arrival

CLOCK _
earliest

! arrival time

1

:

; . latest
Data Si | > ' arrival time

! min I
dala oigna P >

! max
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e Slack is the difference between the required time and the
arrival time

e SLACK +ve ---- Constrains have been met

e SLACL -ve ---- Violations
* Critical pathis a path in the design that has the smallest

slack.
CLOCK |
earliest
arrival time —_—
WI ) cycle 1 . cycle 2 ‘
' . Iatt_ast . i V/ | \
Data Signal T : arrival time . f % §
i max // \ | |

Hold violation will
accur here %‘
|
earliest

required time
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® STAtool calculates the slack of each logic path, in order to find

critical path.

Early and Latest Analysis

® Early and Latest analysis approaches:

B Assumes circuits have minimum delay, compares arrival time to

earliest required time (hold check)

B Assumes circuits have maximum delay, compares arrival time to

latest required time (setup check)

clock

.

&* setup

data

7

clock

data
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Delay Modeling

Path Delay: Basic Approach

Delay Dependencies

10ps —120ps

rise

10fF - 50 fF

load

I:rise
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Delay Dependencies

and C

rise load

tyelay=3-9N depends on't

t3=f(t2e,C3)

a
t
2 Jp t
T\
W [ - ,
t2(: Ji %CZ %03

t,=f(toq,t26,C2)

tiota™ T(1oastopstse, C1,C0,Co)
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Delay Dependencies: Operating Conditions (PVT)

ty~ Process Variations
ty~ Voltage

ty~ Temperature

Process: TT, FF, SS, etc. (Typical, Fast, Slow)
Voltage: +10%
Temperature: -40 -125°C

More on this in Lecture 5

Cell timing models are used to provide accurate timing for various instances of the
cells present in the design. The timing model normally obtained from detailed circuit
simulation of the cell to model the actual scenario of the cell operation.



'D Tampere University

Delay Models

Linear Delay Model
Non-Linear Delay (NDLM) Model

Composite Current Source (CCS) Model

Tconnect

g

"

B T5|0Pe Tintrinsic

> D
8 2

_/_
:'— Ttransition :'_

Ttotal = Tslope + Tintrinsic + Ttransition + Tconnect




CJ Tampere University D (S lay M O d = lS Teonnect
B T5|0pe Tintrinsic

: — D
Linear Delay Model | -
® Slope Delay (Tgjope) A.C _/_

® The transition time of the :.o— Tiransition :.._

previous gate

k-

"

® Intrinsic Delay (Tigtrinsic)

® Transitiontime (T, s
® Delayof anelement (Ttransition)

B Delayintroduced by capacitive load on

® ConnectDelay (T.onnect) . :
driving pin

® Delayfrom transition of the
driving pin to endpoint u Ttransition = Rdrive * (Zpins Cpin + Cwire)

Not accurate over the range of input transition time and output capacitance.

For deep Sub-micron technologies, most of the cell libraries use the more complex
models like Non-linear Delay Model (NLDM) and CCS model.
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Delay Models

Propagation
Delay

102 308 |58.7 w9 1516

Non-Linear Delay (NDLM) Model o/ 77 TN
!Irlrggllswliun ‘3'70255’ - o
tme vy S
Ttotal = Tpropagation + Ttransition + 7-Connect */ / / / / /

® Transition time (Teransition)
B Delayintroduced by capacitive load on driving pin (measured, not calculated)
® Propagation delay (Tyropagation)

B Time from the 50 percent input pin voltage until the gate output just begins to
switch (10 percent output voltage) (measured, not calculated)

® Connect Delay (Tconnect)
B Delay from transition of the driving pin (estimated interconnect delay)

® Transition time and Propagation delay for each cell are measured beforehand and
stored in form of lookup table
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Non-Linear Delay (NDLM) Model o

* Look Up Tables (LUTs), the characterization data such as cell delay and
transition time is indexed by a fixed number of input transition time and load
capacitance values

* Both NDLM and CCS Model use LUTs

* A Synopsys Liberty (.lib) format file, also known as a timing library file (Lib
file), contains several kinds of LUTs for computing cell delay.

* NLDMis a highly accurate timing model as it is derived from SPICE
characterizations.
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Delay Models /

— e

_b _‘_ —
Non-Linear Delay (NDLM) Model input slev -
Qutput cap
Skew
The time difference between a clock signal’s cell rise oOr cell fall
. . Input slew table
actual and expected arrival time. A
Q.7§ 025| 027 | 031 |033 |04
Slew 0.5 026| 028 | 029 |031 |035
. . . - 020 035| 037 | 039 | 041 045
* Thetime it takes for a signal to transition
0.1 040| 041 | 043 |048 [051
from one voltage level to another. ———— >
output cap

Rate of change of voltage with respect to
time.

The slew (slew rate) is also known as
transition delay (10 to 90 percent).
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Synopsys Liberty Format (.lib)

library (Digital Std Lib) {
technology (cmos) ;

delay model : table lookup;
cell (AND2) {

area : 2;
pin(a) {
direction : input;
}
pin(B) {
direction : input;
}
pin(z) {
direction : output;
function : "A*B";

timing () {

related pin :
timing type :
cell rise(..) {
index| 1("0.0le6, 0.032,

index| 2("2, 4");
values ("1.0020,
"1.0080,

\\ATI

}
}
} /* end of pin */
} /* end of cell */
} /* end of library*/

"combinational™

r

r

0.064") ;

1.1280,
1.1310,

3.547 v,
3.847 ©

2
-

\

);

Lookup table

0.016 0.032 0.064
1.0020 1.1280 3.547
1.0080 1.1310 1.1310
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. pin (OUT) {
Non-Linear Delay (NDLM) Model ~ . .. . .
timing () {
related pin: "INP1";
timing sense: negative_unate;
cell rise (delay_template_3x3) {
index 1("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */
Delay table 1-'&11:165 [f— 0.16 0.351.43 */ \
/* 0.1 %/ "0.0513, 0.1537, 0.5280", \
« Aninput fall transition time Of /* 0.3 %/ (0.10180.2327, 0.6476", \
/¥ 0.7 ¥/ "0.1334, 0.2973, 0.7252");
0.3ns and an output load of

0.16pf will correspond to the rise cell_fall (delay_template_3x3) {

. index 1("0.1, 0.3, 0.7"); /* Input transition */
delay of the inverter 0 0.1018ns index 2 ("0.16, 0.35, 1.43"); /¥ Output capacitance */

values ( /* 0.16 0.351.43 */ \
/¥ 0.17%/"0.0617, 0.1537, 0.5280", \
/* 0.3 %/ "0.0018, 0.2027, 0.5676", \
/* 0.7 %/ "0.1034, 0.2273, 0.6452");

et

Reference. Vazgen Melikyan, Synopsys University Courseware (Synopsys confidential information) 9/15/2025 | 53



library () {

'D Tampere University lu table template ("del 1 7 7") {
variable 1 : "input net transition";
index 1("1, 2, 3, 4, 5, 6, T");
variable 2 : "total output net capacitance";
Cell Timing Data index 2("1, 2, 3, 4, 5, 6, 7");

(Y) {
timing () {

related pin : "A";
timing type : "combinational";
timing sense : "negative unate";

cell rise ("del 1 7 7") {

index 1("0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1.024");
index 2("0.1, 0.25, 0.5, 1, 2, 4, 8");

values("0.0le861, 0.0179019, 0.0195185, 0.0229259, 0.029658, 0.043145, 0.07712",
"0.0239648, 0.0255491, 0.0279298, 0.0319930, 0.0387540, 0.0520896, 0.0790211",
"0.0342118, 0.0366966, 0.0402223, 0.0462823, 0.0558327, 0.0705154, 0.0967339",
"0.0491695, 0.0524727, 0.0576512, 0.0665647, 0.0810999, 0.1027237, 0.1342571",
"0.0721332, 0.0765389, 0.0836775, 0.0960890, 0.1171612, 0.1497265, 0.1957640",
"0.1111560, 0.1164417, 0.1252609, 0.1422002, 0.1712097, 0.2171862, 0.2847010",
"0.1841131, 0.19%01881, 0.2010298, 0.2194395, 0.2555983, 0.3182710, 0.4139452");

PP

Delay Analysis
® Calculation of each timing arc’s value cell delay or a net delay

® Positive unate timing arc combines rise delays with rise delays and fall delays with fall
delays (Buffers, AND, OR)

® Negative unate timing arc combines incoming rise delays with local fall delays and vice
versa (Inverter, NAND, NOR)

® Non-unate timing arc combines local delay with the worst — case incoming delays logic
functions whose output value change cannot be predicted (XOR, XNOR
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Delay Models

Composite Current Source Model (CCS)

* More accurate than NLDM
* The driver model uses a time-varying current source.
* The receiver model consists of 2 different capacitors.

* The first one is used as load up to the input delay
threshold. A second capacitance value is used when the
iInput waveform reaches the threshold value.

* CCS models are frequently used in advanced technology
nodes.
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Path-based Timing Calculation

® Calculates minimum and maximum path delay costs

® The timing analyzer represents a netlist as a directed graph
B Nodes inthe graph
B Edges represent

@ Net delay - interconnect delay between a driver pin and a load pin (its
fanout)

@ Cell delay - timing delay between an input pin and an output pin of a cell

b‘.e’,. o/

oo
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Representation of Circuits

® Combinationallogic circuit may be represented as a timing graph G = (V,E)

B V, the vertex set, are the logic gates in the circuit and the primary inputs and
outputs of the circuit

® \ertices,uandv e G, are connected by a directed edge e(u,v) EE

B Connection from the output of the element represented by vertex u to the
input of the element represented by vertex v

® Circuitisrepresented by directed acyclic graph (DAG)

B Do not have any cycles

11 G1

12 E 01

G2

G3
13 1_<
14

G4 G6 2
15
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Circuit with Delays of Components
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Path 1: VIOLATED Setup Check with Pin Controller_Unit/find_min/val_out_reg 9 /

'D Tampere University cp
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Arrival Time/Violations

® Arrival Time (AT)

® The Arrival Time at a node is just the maximum of the ATs at the predecessor nodes
plus the delay from that node.

® Required Arrival Time (RAT)

® The Required Arrival Time to a node is just the minimum of the RATs at the successor
nodes minus the delay to that node

® Max Delay (Max Constraints)
® Datadoesn’t have enough time to pass from one register/FFs to the next.
® Slow Data Path
® Setup Violations
® Min Delay (Min Constraints)
® Datapathis so shortthatit passes several registers/FFs during one clock cycle
® Short Data Path

® Hold Violations



a (0.15) (2)\ (0.2)

-D Tampere University — y j w(2) (0.2)— f

(0.1) M
b—(“)-[bo—l—(o.s) (0.25)
STA/AT

c

Slack = RAT - AT for each node a (0) (0.15) ——>y (2) ’
Val 2N
AAT. Actual Arrival Time ©) (0.1) (02)
RAT. Required Arrival Time / \‘
(0)> b (0)—(0.1)> x (1) w (2)-(0.2)> £(0)
AN /!
(0.6) (0.3) (0.25)

\ N

¢ (0) (0.1) ——>z (2)

Compute AATs at each node:

AAT(v) = max (AAT(u) +t(u,v))
uekFi(v)
where Fl(v) is the fanin nodes, and t(u,v) is the delay between u and v
(AATs of inputs are given)

* Given combinational circuit, represent as directed acyclic graph (DAG) -
Every edge (node) has weight = wire (gate) delay
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2 (0) (0.15) —>y (2)
/A0 /A32\
(0) (0.1) (0.2)
/ N\,
(0)> b (0)—(0.1)> x (1) w (2)-(0.2)> f(0)
A0 /'A565 A585
(0.25)

* Arrival Time computation (Forward Pass)



Compute RATs at each node:
'D Tampere University

RAT(v) = n}}ll} (RAT (u)—1(u,v))

STA/RA where FO(v) are the fanout nodes, and f(u,v) is the delay between u and v

(RATs of outputs are given)

a (0) (0.15) ——>y (2)
/'R0.95 /R3.1\
(0) (0.1) (0.2)
/ N
(0)>b (0)—(0.1)>'x (1) w (2)-(0.2)>f(0)
R -0.35 R-035 R 0.75\ /R5.3 R5.5

(0.25)
(0.6)\ / P
c (0)

(0. 1)—)-2 (2)

R0.95 R 3.05

Forward to backward pass /Assume Clock period of 5.5/ Min delay



Compute slacks at each node:
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slack(v) = RAT (v)— AAT(v)

STA/SLACK
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Path Slack Histogram

&
Number of paths

Negative slack

' Positive slack

® |[f there is no path with negative slack, this will mean design does not
have timing violations.



- D Tampere UniverSity Number of paths

Timing Checks

Negative slack

[
i Positive slack

« Constraints set by sequential circuits:
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Setup Timing Check

* Data must be stable before the active edge of the

clock

CLK ] %/

OO

_
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Setup condition

launch fIipiIop(LFF) capture ﬂ\ip-ﬂop(CFF)
4 N\ TC 4 N\
) FF
J— Logic D Q
Tlaunch
CLK PCLK
Tcapture
L Tcycle -
CLK '
'I‘:launch—yl
Launch edge
LFF/CK

wwn > S XL

T 1
>
" Tcapture

CFF/CK |

& ‘ Capture edge

TIaunch + TLFF + Tc < Tcapture + T - T

cycle setup
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Hold Timing Check

* Verifies that the data is held stable for a specified amount
of time after the active edge of the clock

|

cmj %%

s B Wy R
OO TINe
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Hold condition

T
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+ T e+ T, >
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capture
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aunch |
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Removal Timing Check

* Verifies that there is required amount of time between an
active clock edge and the release of an asynchronous

control signal
set = =
- ,_H Q’ ik

Earliest set can be removed

CLK

4>

set

/

M\\

Removal time
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Recovery Timing Check

* Verifies that there is a minimum amount of time between
the asynchronous signal becoming inactive and the next

active clock edae ot

Latest set can be removed

\»

set % :

CLK

CLK I




Next Lecture: Logical Synthesis
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