

TIE-23536 Cloud Applications Lecture 1: introduction

Kari Systä

30.08.2019

Today's content

- Introduction to the course
- Introduction to DevOps
- Next steps in the course

Student background

- Passed TIE-23526 Web Architectures?
- Passed TIE-23546 Cloud Platforms?
- Now starting TIE-23546 Cloud Platforms?
- Passed TIE-21107 Software Engineering Methodologies ?
- Passed TIE-21201 Software Testing?
- Practical experience with Docker?
- Practical experience with Kubernetes?
- Practical experience with AWS?
- Practical experience with Azure Cloud?

What is this course about

 How to design, implement, deploy and operate cloud applications.

So this is a DevOps course

A lot about automation of the above

Rought plan – subject to change

- 30.08: Intro to the course and DevOps
- 06.09: Recap (from earlier courses) on virtualization technologies;
- 13.09: Cloud and scalability
- 20.09: Continuous Deployment what & why
- 27.09: Continuous Deployment tools and techniques
- 04.10: Security issues; recap on internet networking (from earlier courses)
- 11.10: Guest lecture on AWS

- 23.10: Issues on cloud-SW: isolation, dependency management etc,
- 30.10: Cloud-native architectures: microservices
- 06.11: Cloud-native architectures: FaaS/serverless
- 13.11: About automation: testing and beyond
- 20.11: Hosting and deployment issues
- 27.11: Guest lecture on Kubernetes
- 04.12: Recap

06.09: Recap (from earlier courses) on virtualization technologies;

- What and why
- Hypervisor vs containers?
- Technology examples
 - Vagrant
 - Docker

13.09: Cloud and scalability

- Technical and business perspectives
- Technologies

20.09: Continuous Deployment – what & why

Software engineering and business perspectives

30.8.2019 SSSS

27.09: Continuous Deployment – tools and techniques

- Design and implementation of the pipeline
- Technology examples with the xenialab periodic table

04.10: Security issues; recap on internet networking (from earlier courses)

• A lot of misc. Stuff

- Technology example
 - NGINX

11.10: Guest lecture on AWS

23.10: Issues on cloud-SW: isolation, dependency management etc,

- First scare the students with the complexity
- Then, give some solutions

30.10: Cloud-native architectures: microservices

- 00 vs SOA
- Traditional SOA vs microservices
- Typical solutions
 - API gateway
 - Message bus

06.11: Cloud-native architectures: FaaS/serverless

What and why

13.11: About automation: testing and beyond

- What and why to automate
- Research directions

20.11: Hosting and deployment issues

- Focus on continuity systems should not break when updated
- Technology examples
 - Blue-green
 - Canary

27.11: Guest lecture on Kubernetes

A tool that is currently widely used

04.12: Recap

You

Automation:	4
Doctoral school:	9
Exchange students:	7
Electrical engineering:	3
Science and engin.:	2
Information techn.:	51
• TSK:	23
• TTK:	2
• Other:	6

What do I expect from your background

• 10-20 credits of software engineering after the first two programming courses

 Programming routine; typically in this phase you should be able to pick up a new programming language without specific teaching

 Basic knowledge of Linux/Unix operating system; command shell, file system etc.

• Some experience with virtualization, containers and docker.

The bad news

- This is a new course that we are just ramping up
- We have a serious lack of teaching staff
- Unless some miracle happens we are forced to limit the number of participants.
- Priority is give to students who are
 - At least on master-level (do you BSc first!)
 - Major is software engineering

Passing requirements

- Exam
 - Electronic
- Project
 - Details will be published in couple of weeks
- A few compulsory on-line exercises
- Some face-to-face sessions mainly to help

Course logistics

- Lectures
 - Fridays 10-12 in SA207
- Weekly/on-line ("alone") exercises
 - Wednesdays 14-16 in SJ204
 - Fridays 14-16 in SJ204
 - Physical ones will not start before 11.09

Project

- In which language?
 - YAML

JavaScript, Python, Golang...

The main part is building of pipeline

Course material

- Will be collected to
 - https://plus.tuni.fi/tie-23536/autumn-2019/
- Examples of recommended reading
 - Humble, Farley: Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation (Addison-Wesley Signature Series)
 - Summary part of "Lwakatare, Lucy Ellen: DevOps adoption and implementation in software development practice: concept, practices, benefits and challenges,", http://urn.fi/urn:isbn:9789526217116

DevOps

DevOps – where it started

(http://dev2ops.org/2010/02/what-is-devops/)

- DevOps is a response to the growing awareness that there is a disconnect between what is traditionally considered development activity and what is traditionally considered operations activity. This disconnect often manifests itself as conflict and inefficiency.
- Wall of confusion

20.03.2017 TIE-21100/21106; K.Systä 29

20.03.2017 TIE-21100/21106; K.Systä 30

The lifecycle

20.03.2017 TIE-21100/21106; K.Systä 31

What is DevOps (there are several definitions)

Lucy Lwakatare:

- DevOps is a concept that embodies a cultural and mindset change that is substantiated with a set of practices to encourage cross-disciplinary collaboration between software development and IT operations within a software company. The main purpose for the collaboration is to enable the fast release of quality software changes while simultaneously operating resilient systems.
- From a socio-technical perspective, DevOps practices are focused on the automation practices of software deployment and infrastructure management, specifically automation of configuration management and monitoring.

DevOps practices

- Organizational (draw a picture!)
 - increased scope of responsibilities for developers;
 - intensified cooperation between development and operations.

- Technical
 - automation,
 - monitoring
 - measurement

DevOps - benefits and challenges

- improvement in speed (release cycle time)
- continuous deployment of system changes
- productivity of operations work
- improved morale, knowledge and skills
- resource constraints;
- insufficiencies in infrastructure management;
- high demands for required skills and knowledge, and
- difficulties in monitoring microservices

Tools

Communication and Feedback

Tools

Back your course

Underlying principles

30.8.2019 ssss ssss

Course material will be in "plus".

- Seminar from last Spring:
 - https://plus.cs.tut.fi/cloudapps/spring-2019/
- This implementation
 - https://plus.tuni.fi/tie-23536/autumn-2019/

Back to the bad news

The bad news

- This is a new course that we are just ramping up
- We have a serious lack of teaching staff
- Unless some miracle happens we are forced to limit the number of participants.
- Priority is give to students who are
 - At least on master-level (at least in practice!)
 - Major is software engineering

Second bad news

- Our plan was to offer virtual machines for you to play with.
 Unfortunately, the system is still "under construction."
- Thus you need a "Linux".
 - I strongly recommend a virtual machine (and back-up snapshots)

Before limiting the number of students

- Let's see if I can get more teaching staff
- If some students realize that this course is not for them at this point
- Decisions done 06.09 (by the latest)

First plus-"exercise" is a background check

- Info will be sent as a "pop"-message
 - Deadline 06.09 @ 09:00
- Second will be hands-on with Docker
 - Deadline 13.09 @ 23:59