
Schedule for coming weeks

8.9.2020 ssss 1

Week Lecture Plussa exercises (deadlines)
-1
0 17.08 Plussa open for students
1 / 35 25.08 Intro to the course and topic. 20.08 Background survey opens
2 / 36 01.09 Virtualization, what, why and how.

Intro to containers and Docker.
04.09 Background survey closes

3 / 37 08.09 Cloud and scalability, implications to
SW development and business

11.09/17.09 Docker exercise closes

4 / 38 15.09 Continuous deployment,
what and why

17.09 Docker compose e. opens

5 / 39 21.09 Continuous deployment,
tools and techniques

6 / 40 28.09 Issues on cloud-SW: isolation,
dependency management etc

01.10 Docker compose e. closes

About you

• Plus.tuni.fi has now 92 enrolled students
• 67 of you answered to background questonary
• Less than half meet the formal pre-requisities,

but about 50 students seem to have otherwise strong background, and
17 might have taken this course too early.

• I still hope that clearly over 50 students finally pass the course

8.9.2020 ssss 2

Next exercise
In this exercise you will create a simple docker file and run in.
Your task is to
• implement a simple “Hello, World” application in any programming language you wish. I hope to see many!
• Create Dockerfile that runs this application (need to have a compiler or runtime for the selected

programming language)
• Build the docker image and run it.
Your return should include three things
• Content of the Dockerfile
• Output of “docker history” of your created image
• Source code of the application
In addition we ask you to answer couple questions. These answers are not graded, but they are used to develop
this course.

**DEADLINE FOR FULL POINTS IS 11.09.2020. THIS SECTION CLOSES 17.09.2020. **
Links to Docker material can be found from <https://plus.tuni.fi/comp.se.140/fall-
2020/c01_intro/03_material/>

8.9.2020 ssss 3

https://plus.tuni.fi/comp.se.140/fall-2020/c03_cloud_and_virtualization/docker/
https://plus.tuni.fi/comp.se.140/fall-2020/c01_intro/03_material/

“Kooditorio”

• In normal times we have a special place where students can come
with their problems.

• Now, we try that with zoom-sessions at 1400-1530.

8.9.2020 ssss 4

Couple of job adds
• Patria is looking for an SW engineer

https://pm-careers.rekrytointi.com/paikat/?o=A_RJ&jgid=1&jid=1508
• Hitachi ABB Power Grids

Looks for part time (18h/w) employee
• Our VISDOM project (https://iteavisdom.org)

Can hire a master thesis worker.

• Contact me (kari.systa@tuni.fi) if you are interested

8.9.2020 ssss 5

https://pm-careers.rekrytointi.com/paikat/?o=A_RJ&jgid=1&jid=1508
https://iteavisdom.org/
mailto:kari.systa@tuni.fi

Recap on Docker

8.9.2020 ssss 6

Typical set-up

8.9.2020 ssss 7

Host

Repository

Image

Image

Image

Download

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Typical set-up

8.9.2020 ssss 8

Host

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Volume Volume

Volumes are for
- Persistent data
- Data sharing

Dockerfile

#This is a sample Image
FROM ubuntu
MAINTAINER demousr@gmail.com
RUN apt-get update
RUN apt-get install –y nginx
CMD [“echo”,”Image created”]

8.9.2020 ssss 9

mailto:demousr@gmail.com

Docker commands (subset of)

8.9.2020 ssss 10

docker build Build an image from a Dockerfile

docker container Manage containers

docker commit Create a new image from a container’s changes

docker exec Run a command in a running container

docker image Manage images

docker inspect Return low-level information on Docker objects

docker ps List containers

docker run Run a command in a new container

docker stop Stop one or more running containers

docker swarm Manage Swarm

docker volume Manage volumes

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/container/
https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/image/
https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/swarm/
https://docs.docker.com/engine/reference/commandline/volume/

8.9.2020 ssss 11

8.9.2020 ssss 12

8.9.2020 ssss 13

FROM node:6.10.0-alpine
USER root
COPY . /home
WORKDIR /home
ENV PORT=8893
EXPOSE 8893

CMD node pinger.js

$ docker history 874176ca6a7c
IMAGE CREATED CREATED BY SIZE
874176ca6a7c 18 months ago /bin/sh -c #(nop) CMD ["/bin/sh" "-c" "node… 0B
e477afdf62b1 18 months ago /bin/sh -c #(nop) EXPOSE 8893 0B
bbb82ecea436 18 months ago /bin/sh -c #(nop) ENV PORT=8893 0B
f7e49216f8f8 18 months ago /bin/sh -c #(nop) WORKDIR /home 0B
75bf5968b264 18 months ago /bin/sh -c #(nop) COPY dir:fed108fd8e77a8ed8… 553kB
1fb4fbe8beb7 18 months ago /bin/sh -c #(nop) USER root 0B
8232a8b9c483 3 years ago /bin/sh -c #(nop) CMD ["node"] 0B
<missing> 3 years ago /bin/sh -c apk add --no-cache --virtual .bui… 3.56MB
<missing> 3 years ago /bin/sh -c #(nop) ENV YARN_VERSION=0.21.3 0B
<missing> 3 years ago /bin/sh -c adduser -D -u 1000 node && ap… 45.4MB
<missing> 3 years ago /bin/sh -c #(nop) ENV NODE_VERSION=6.10.0 0B
<missing> 3 years ago /bin/sh -c #(nop) ENV NPM_CONFIG_LOGLEVEL=i… 0B
<missing> 3 years ago /bin/sh -c #(nop) ADD file:3df55c321c1c8d73f… 4.81MB

Some Dockerfile commands
• FROM <image> [AS <name>]
• RUN <command>

execute any commands in a new layer and commit the results.
• CMD

default command to be executed when the container starts
• ENV <key> <value>
• ADD [--chown=<user>:<group>] <src>... <dest>
• COPY [--chown=<user>:<group>] <src>... <dest>

• kari@lepikko-nuc:~/CloudApplications/test$ docker build .
• Sending build context to Docker daemon 3.072kB
• Step 1/3 : FROM debian:buster-20190812-slim
• ---> 83a10817c894
• Step 2/3 : RUN date > /home/123456.txt
• ---> Using cache
• ---> 38b806d0d640
• Step 3/3 : CMD cat /home/123456.txt
• ---> Using cache
• ---> 68ea2e469580
• Successfully built 68ea2e469580
• kari@lepikko-nuc:~/CloudApplications/test$ docker run 68ea2e469580
• Wed Oct 23 16:34:26 UTC 2019

8.9.2020 ssss 15

kari@lepikko-nuc:~/CloudApplications/test$ docker inspect 68ea2e469580
[

{
"Id":

"sha256:68ea2e469580458998dfdc9c0a13db39541803e6f988245ee55f2b124fb1035f",
"RepoTags": [],
"RepoDigests": [],
"Parent":

"sha256:38b806d0d64026fe73682cead45e9089772618392a86fe29cff70f0aebff9a2c",
"Comment": "",
"Created": "2019-10-23T16:34:27.518846277Z",

8.9.2020 ssss 16

kari@lepikko-nuc:~/CloudApplications/test$ docker image rm
68ea2e469580
Error response from daemon: conflict: unable to delete 68ea2e469580 (must
be forced) - image is being used by stopped container 832701d84725
kari@lepikko-nuc:~/CloudApplications/test$ docker image rm -f
68ea2e469580
Deleted:
sha256:68ea2e469580458998dfdc9c0a13db39541803e6f988245ee55f2b124
fb1035f
Deleted:
sha256:38b806d0d64026fe73682cead45e9089772618392a86fe29cff70f0aeb
ff9a2c

8.9.2020 ssss 17

kari@lepikko-nuc:~/CloudApplications/test$ docker build .
Sending build context to Docker daemon 5.12kB
Step 1/3 : FROM debian:buster-20190812-slim
---> 83a10817c894
Step 2/3 : RUN date > /home/123456.txt
---> Running in 646f50d34715
Removing intermediate container 646f50d34715
---> d97b91c429fc
Step 3/3 : CMD cat /home/123456.txt
---> Running in 2750a97284f8
Removing intermediate container 2750a97284f8
---> fc4c5d3376a9
Successfully built fc4c5d3376a9
kari@lepikko-nuc:~/CloudApplications/test$ docker run fc4c5d3376a9
Sun Sep 6 08:53:24 UTC 2020

8.9.2020 ssss 18

kari@lepikko-nuc:~/CloudApplications/test$ docker history fc4c5d3376a9

IMAGE CREATED CREATED BY SIZE

fc4c5d3376a9 About a minute ago /bin/sh -c #(nop) CMD ["/bin/sh" "-c" "cat … 0B

d97b91c429fc About a minute ago /bin/sh -c date > /home/123456.txt 29B

83a10817c894 12 months ago /bin/sh -c #(nop) CMD ["bash"] 0B

<missing> 12 months ago /bin/sh -c #(nop) ADD file:330bfb91168adb4a9… 69.2MB

kari@lepikko-nuc:~/CloudApplications/test$

8.9.2020 ssss 19

Docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 99d4b9dd0fea 32 seconds ago 1.19GB
<none> <none> f86de57f2f64 2 minutes ago 1.19GB
<none> <none> c6f93e248201 14 minutes ago 944MB
<none> <none> 8d4c9c98fece 15 minutes ago 944MB
<none> <none> 51257e92bd03 18 minutes ago 944MB
<none> <none> fc4c5d3376a9 33 minutes ago 69.2MB
node latest 40ce906a3734 4 days ago 944MB
gcc latest cfe277915109 4 days ago 1.19GB
rabbitmq 3-management 38e57f281891 5 months ago 184MB
rabbitmq 3 ce51f7cc8a59 5 months ago 154MB
kari@lepikko-nuc:~/CloudApplications/DockerExercise$ docker build -f Dockerfile.gcc -t gcc-hello .
Successfully built 99d4b9dd0fea

Successfully tagged gcc-hello:latest

kari@lepikko-nuc:~/CloudApplications/DockerExercise$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE

gcc-hello latest 99d4b9dd0fea 28 minutes ago 1.19GB

<none> <none> f86de57f2f64 30 minutes ago 1.19GB

<none> <none> c6f93e248201 42 minutes ago 944MB

8.9.2020 ssss 20

A sneak peak to docker-compose

• A technology to set up a group of interworking containers
• Configuration defined in file ’docker-compose.yaml’

version: '3'
services:

pinger:
image: "pinger”
ports:

- "8893:8893”
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_2
pingrelay:

build: "pingrelay”
ports:

- "8004:8894”
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_1
networks:

pingnet:
volumes:

data: {}

Docker Swarm

• Clustering for scalability

8.9.2020 ssss 23

N
g
i
n
x

OrionOrionOrion

OrionOrionQuantum
Leap

MongoDB

CrateDB

Grafana

Wirecloud

FIWARE Core
Component

Database

Dashboard
Component

Access control,
proxy server

CKAN

Data Management
Component

PostgreSQL

FIWARE platform architecture

FIWARE access control components
(Keyrock, Wilma and AuthZForce)
are not included in this document.

Vagrant

8.9.2020 ssss 25

Vagrant intro

• A way to create and distribute development environments as virtual
machine (full VMs – not containers)

• If time lets look: https://www.vagrantup.com/intro/index.html

8.9.2020 ssss 26

https://www.vagrantup.com/intro/index.html

Vagrant vs Docker
(https://www.vagrantup.com/intro/vs/docker.html)

• Vagrant is a tool focused on providing a consistent development environment workflow across
multiple operating systems. Docker is a container management that can consistently run software
as long as a containerization system exists.

• Containers are generally more lightweight than virtual machines, so starting and stopping
containers is extremely fast. Docker uses the native containerization functionality on macOS,
Linux, and Windows.

• Currently, Docker lacks support for certain operating systems (such as BSD). If your target
deployment is one of these operating systems, Docker will not provide the same production
parity as a tool like Vagrant. Vagrant will allow you to run a Windows development environment
on Mac or Linux, as well.

• For microservice heavy environments, Docker can be attractive because you can easily start a
single Docker VM and start many containers above that very quickly. This is a good use case for
Docker. Vagrant can do this as well with the Docker provider. A primary benefit for Vagrant is a
consistent workflow but there are many cases where a pure-Docker workflow does make sense.

• Both Vagrant and Docker have a vast library of community-contributed "images" or "boxes" to
choose from.

8.9.2020 ssss 27

Introduction to cloud
(Back to general concepts)

Agenda

• History and motivations
• Definitions
• Categories: IaaS, SaaS, PaaS
• Business and SW development perpective
• (Technical perspectives in Cloud Platforms course)

Our perception?

Different interpretations
• It is somewhere in the cloud and controlled by a ”big brother”
• We do not need to buy our computing hardware anymore
• Cool technology to play with
• Accessible from anywhere
• Other

Where did it start ?
https://www.dataversity.net/brief-history-cloud-computing

(Virtualization is an old invention)
(We discussed it a week ago)
• ” In its early stages, the Cloud was used to express the empty space between the end

user and the provider. In 1997, Professor Ramnath Chellapa of Emory University defined
Cloud Computing as the new ’computing paradigm, where the boundaries of computing
will be determined by economic rationale, rather than technical limits alone.’ ”
• In 1999, Salesforce became a popular example of using Cloud Computing successfully.

They used it to pioneer the idea of using the Internet to deliver software programs to
the end users. The program (or application) could be accessed and downloaded by
anyone with Internet access. Businesses could purchase the software in an on-demand,
cost-effective manner, without leaving the office.

https://www.dataversity.net/brief-history-cloud-computing
https://www.salesforce.com/

Case salesforce

• From https://www.salesforce.com/:

https://www.salesforce.com/

https://www.computerworld.com/article/342774
1/a-brief-history-of-salesforce-com.html

“The way the story goes is that Marc Benioff was floating in the sea just
off Big Island in his beloved Hawaii during a sabbatical when he
thought: why can't buying software be as a simple as Amazon is for
consumer goods?
This line of thinking eventually led to Benioff and a team of developers
pioneering the software-as-a-service (SaaS) model by delivering its
customer relationship management (CRM) software over the internet
on a per seat, per month payment plan, instead of deployed on-
premise servers under a hefty licensing agreement.”

Taivalsaari, Systä: Cloudberry: An HTML5 Cloud Phone
Platform for Mobile Devices IEEE Software July/August 2012

34 *Oma nimi ja esityksen aihe vaihdettava ylätunnisteeseen 8.9.2020

A research prototype in which the
application stack of a smart phone
was implemened with HTML5.

Key components of Cloudberry

• Modern browser engine
• Downloadable top-level Uis
• Suite of web applications
• Data API that transparently stored to backend
• Set of device APIs
• Domain and permission based security model
• Process model

8.9.2020 35

For more information
see the article

8.9.2020 36

Case Amazon
• Forerunner of web-based retail services.
• Used only 10% of their computing capacity capacity (which was commonplace at

the time).
• The Cloud Computing Infrastructure Model gave them the flexibility to use their

computer’s capacity much more efficiently.
• Soon after, other large organizations followed their example.
• In 2006, Amazon launched Amazon Web Services, which offers online services to

other websites, or clients.
• Another of Amazon Web Services’ sites is the Elastic Compute Cloud (EC2),

allowing individuals to rent virtual computers and use their own programs and
applications.
• Now selling computing capacity to others (AWS business) brings about half of the

operating income (source: https://press.aboutamazon.com/news-releases/news-
release-details/amazoncom-announces-first-quarter-sales-17-597-billion)

https://aws.amazon.com/what-is-cloud-computing/
http://aws.amazon.com/products

Case Google

• Also in 2006, Google launched the Google Docs services.
• Based on two separate products,
• Google Spreadsheets (acquired from 2Web Technologies, in 2005) and
• Writely (Google purchased Writely)

• In 2007, IBM, Google, and several universities joined forces to
develop a server farm for research projects needing both fast
processors and huge data sets.

• 2007 was also the year when Netflix launched it’s streaming video
service, using the Cloud, and provided support for the practice of
“binge-watching.”

Story continues

• IBM
• Smart Cloud
• IBM Cloud (formerly IBM Bluemix and IBM SoftLayer)

• Microsoft
• Azure
• Office 360

• Apple
• ICloud

Example SaaS: Adobe Creative Cloud
(http://www.paulpehrson.com/2011/04/11/adobes-new-software-as-a-service-
model/)

19.03.2018 TIE-21100/21106; K.Systä 40

Product Full Upgrade* SAAS**
Months to
justify initial
investment***

Design
Premium $1899 $399 $95 20

Web Premium $1799 $399 $89 20
Production
Premium $1699 $399 $85 20

Master
Collection $2599 $549 $129 20

Photoshop $699 $199 $35 20
Illustrator $599 $199 $29 20

Evolution of client-server split
(thin vs thick client)

41 8.9.2020

Mainframe + terminal

Workstation

PC

Client-server
computing

Network computer

X-Windows

Web

HTML5

Cloud Computing

Towards definitions
Peter Mell; Timothy Grance (September 2011). The NIST Definition of Cloud Computing
(Technical report). National Institute of Standards and Technology: U.S. Department of
Commerce. doi:10.6028/NIST.SP.800-145. Special publication 800-145.

Essential characteristics 1/2
• On-demand self-service. A consumer can unilaterally provision computing capabilities,

such as server time and network storage, as needed automatically without requiring
human interaction with each service provider.
• Unilaterally?
• Without human interaction?

• Broad network access. Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, tablets, laptops, and workstations).
• What does the heterogeneous platforms mean in practice?

• Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To the
consumer, the capabilities available for provisioning often appear to be unlimited and
can be appropriated in any quantity at any time.
• What if scaling is not automatic?

Essential characteristics 2/2
• Resource pooling. The provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense of
location independence in that the customer generally has no control or knowledge over
the exact location of the provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter). Examples of resources
include storage, processing, memory, and network bandwidth.
• Why is this essential?

• Measured service. Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage
can be monitored, controlled, and reported, providing transparency for both the provider
and consumer of the utilized service.
• Why?

Service models

IaaS

PaaS

SaaS
Infrastructure as a Service (IaaS). The capability provided to
the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems,
storage, and deployed applications; and possibly limited
control of select networking components (e.g., host
firewalls).

Examples?

Service models

IaaS

PaaS

SaaS
Platform as a Service (PaaS). The capability provided to the
consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage
or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has
control over the deployed applications and possibly
configuration settings for the application-hosting
environment.

Examples?

Service models

IaaS

PaaS

SaaS Software as a Service (SaaS). The capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through either a thin client interface,
such as a web browser (e.g., web-based email), or a
program interface. The consumer does not manage or
control the underlying cloud infrastructure including
network, servers, operating systems, storage, or even
individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Examples?

The examples are discussed next week

8.9.2020 ssss 48

Deployment models

• Private cloud. The cloud infrastructure is provisioned for exclusive use by a single organization
comprising multiple consumers (e.g., business units). It may be owned, managed, and operated
by the organization, a third party, or some combination of them, and it may exist on or off
premises.
• Community cloud. The cloud infrastructure is provisioned for exclusive use by a specific

community of consumers from organizations that have shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It may be owned, managed, and operated
by one or more of the organizations in the community, a third party, or some combination of
them, and it may exist on or off premises.
• Public cloud. The cloud infrastructure is provisioned for open use by the general public. It may

be owned, managed, and operated by a business, academic, or government organization, or some
combination of them. It exists on the premises of the cloud provider.
• Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud

infrastructures (private, community, or public) that remain unique entities, but are bound
together by standardized or proprietary technology that enables data and application portability
(e.g., cloud bursting for load balancing between clouds).

