
DD.MM.YYYYKari Systä 1

Lecture 04

Cloud, CD, DevOps

Kari Systä
15.09.2020

Schedule for coming weeks

16.9.2020 ssss 2

Week Lecture Plussa exercises (deadlines)
-1
0 17.08 Plussa open for students
1 / 35 25.08 Intro to the course and topic. 20.08 Background survey opens
2 / 36 01.09 Virtualization, what, why and how.

Intro to containers and Docker.
04.09 Background survey closes

3 / 37 08.09 Cloud and scalability, implications to
SW development and business

11.09/17.09 Docker exercise closes

4 / 38 15.09 Continuous deployment,
what and why

17.09 Docker compose e. opens

5 / 39 21.09 Continuous deployment,
tools and techniques

6 / 40 28.09 Issues on cloud-SW: isolation,
dependency management etc

01.10 Docker compose e. closes
??.10 Next exercise opens

Course practicalities

• At the moment 62 students have returned the first exercise
• Some have missed the two-deadline approach

• Nice collection of programming languages:
Python, JavaScript, Golang, Java, C#, PHP, C, C++, Ruby, Racket,
(sh, HTML)

• Some students have had difficulties in getting access to a Linux VM
• I know two cases, but in case there are more let me know
• My recommedation is Linux. You may use Docker on top of Windows, but under your

own responsibility. The staff members cannot help in case of difficulties.

16.9.2020 ssss 3

Cloud computing - definition

• In 1997, Professor Ramnath Chellapa of Emory University defined Cloud Computing as the new

’computing paradigm, where the boundaries of computing will be
determined by economic rationale, rather than technical limits alone.’
• NIST: Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
•

Service models

IaaS

PaaS

SaaS
Infrastructure as a Service (IaaS). The capability provided to
the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems,
storage, and deployed applications; and possibly limited
control of select networking components (e.g., host
firewalls).

Examples?

Service models

IaaS

PaaS

SaaS
Platform as a Service (PaaS). The capability provided to the
consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage
or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has
control over the deployed applications and possibly
configuration settings for the application-hosting
environment.

Examples?

Service models

IaaS

PaaS

SaaS Software as a Service (SaaS). The capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through either a thin client interface,
such as a web browser (e.g., web-based email), or a
program interface. The consumer does not manage or
control the underlying cloud infrastructure including
network, servers, operating systems, storage, or even
individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Examples?

Software development and
bussiness

Project
organization

Customer

Hosting

Ways to conduct SW business

Project
organization

Customer

Hosting

Project

Labour

Product
organization

Project
organization

Customer

Hosting

Software as a service (SaaS)

Hosting

Product
organization

Project
organization

Customer

Hosting can be a separate business

Hosting

Amazon AWS
Microsoft Azure
IBM Cloud
Google Alphabet
OVH
…
Tieto
Cybercom

Implied changes to SW business
Teppo Yrjönkoski and Kari Systä. 2019. Productization Levels Towards Whole
Product in SaaS Business. IWSiB ’19, August 26, 2019, Tallinn, Estonia

• Easy discovery and access through internet enable worldwide market
for SaaS product vendors. Simultaneously, all players have same
playground and competition is open and global.
• SaaS customers expect new technologies, systems and applications

and faster reactions from their software vendors than customers of
traditional software.
• The increased speed multiplies the risks.

• Great success and failure overnight?

• Cash-flow and funding changes

What is productization?

• ”a standardized process which aims
to produce a high quality
commercial good or service viable
in the market from produced
information”.
• Emphasis on activities beyond R&D.

Productization is SaaS business

• Implications of fast cycles and uncertainty?
• Yrjönkoski proposes a three level model:

Proof of concept
Individual sales from 1st to 10th customer
Mass distribution

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

Implications
to developers
https://cloudrumblings.io/clou
d-farm-pets-cattle-unicorns-
and-horses-85271d915260

The example promised in the lectures

• https://blogs.tuni.fi/cs/research/cattle-instead-of-pets-end-of-
carefully-crafted-software/

16.9.2020 ssss 23

Continuous Delivery and
Deployment

Feedback in traditional development
(Case: Internet-based service; based on slide by Antti Tirilä)

05.03.2018 25

Business Develop QA
(test)

Installation Use

3 months 1 month 1 month

With Agile
iterations

2 weeks 1 week 2 weeks

Feedback in traditional development
(Case: Internet-based service; based on slide by Antti Tirilä)

05.03.2018 26

Business Develop QA
(test)

Installation Use

Continuous integration

05.03.2018 27

”Build”

”Build”

”Build”

Integration

Feedback

Test

Test

Test

Test

Feedback

Continuous deployment

05.03.2018 28

”Build”

”Build”

”Build”

Integration

Feedback

Test

Test

Test

Test

Feedback

Use€€
Feedback

Continuous Deployment

Continuous Delivery

Continuous X

05.03.2018 29

Continuous Integration

Build and test
automation

Automated e2e tests,
delivery of deployable
software (at any time)

Automatic deployment
to production.

05.03.2018 30

From Forrester report: Continuous Delivery: A Maturity Assessment Model: Building
Competitive Advantage With Software Through A Continuous Delivery Process, 2013

Google trends after that 2003

16.9.2020 ssss 31

Continuous delivery and deployment
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-
continuous-deployment)

05.03.2018 32

A/B Testing

05.03.2018 33

Should our
project have
A or B?

Implement a
way to collect

statistics

Implement A

Implement B

Deploy A

Deploy B

Usage
statistics

Usage
statistics

Compare

Stairway to Heaven
(As described by Jan Bosch)

16.9.2020 34

The HYPEX model (Hypothesis Experiment Data-Driven Development)

16.9.2020 35

Business
strategy and goals

Strategic product goal

Feature: expected behavior

Feature
backlog

Develop
hypothesis

Gap
analysis Product

abandon

generate

select

Actual
behavior

Implement alternative MVF

Extend MVF

Expected
behavior

No gap

Implement MVF

Adopted from
Helena Holmström & Jan Bosch:
From Opinions to Data-Driven Software R&D:
A Multi-case Study on How to Close the 'Open Loop‘
Problem

Data-driven software development
1. Planning of the data collection
2. Deployment of data collection
3. Monitoring of the applications
4. Picking up the relevant data
5. Pre-processing – filtering and

formatting – the data
6. Sending and/or saving

the data
7. Cleaning and unification

of the data
8. Storing the data

9. Visualizations and analysis

10. Decision making

16.9.2020 Sampo Suonsyrjä@SEKE2016 36

Business
strategy and goals

Strategic product goal

Feature: expected behavior

Feature
backlog

Develop
hypothesis

Gap
analysis Product

abandon

generate

select

Actual
behavior

Implement alternative MVF

Extend MVF

Expected
behavior

No gap

Implement MVF

1

2

3
45

67
8

9

10

Main principles
(https://continuousdelivery.com/principles/)

• Build quality in
•Work in small batches
• Computers perform repetitive tasks, people solve problems
• Relentlessly pursue continuous improvement
• Everyone is responsible

Sound familiar from somewhere?

Reported HP case-study
(https://continuousdelivery.com/evidence-case-studies/)

They had three high-level goals:
• Create a single platform to support all devices
• Increase quality and reduce the amount of stabilization required prior to release
• Reduce the amount of time spent on planning
A key element in achieving these goals was implementing continuous delivery, with
a particular focus on:
• The practice of continuous integration
• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a virtual platform
• Reproduction of test failures on developer workstations

https://continuousdelivery.com/foundations/configuration-management/
https://continuousdelivery.com/foundations/test-automation/

Reported HP case-study
(https://continuousdelivery.com/evidence-case-studies/)

They had three high-level goals:
• Create a single platform to support all devices
• Increase quality and reduce the amount of stabilization required prior to release
• Reduce the amount of time spent on planning
A key element in achieving these goals was implementing continuous delivery, with
a particular focus on:
• The practice of continuous integration
• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a virtual platform
• Reproduction of test failures on developer workstations

Results:
• Overall development costs were reduced by ~40%.
• Programs under development increased by ~140%.
• Development costs per program went down 78%.
• Resources driving innovation increased eightfold.

https://continuousdelivery.com/foundations/configuration-management/
https://continuousdelivery.com/foundations/test-automation/

Let’s speculate the contribution of each

They had three high-level goals:
• Create a single platform to support all devices
• Increase quality and reduce the amount of stabilization required prior to release
• Reduce the amount of time spent on planning
A key element in achieving these goals was implementing continuous delivery, with
a particular focus on:
• The practice of continuous integration
• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a virtual platform
• Reproduction of test failures on developer workstations

https://continuousdelivery.com/foundations/configuration-management/
https://continuousdelivery.com/foundations/test-automation/

Couple of Finnish studies

Lwakatare , Kilamo , Karvonen, Sauvola , Heikkilä, Itkonen,
Kuvaja, Mikkonen, Oivo & Lassenius:
DevOps in practice : A multiple case study of five companies,
Information and Software Technology , vol. 114 , pp. 217-230 .
https://doi.org/10.1016/j.infsof.2019.06.010

Perceived benefits

• Improved delivery speed of software changes Improved speed in the
development and deployment of software changes to production environment.

• Improved productivity in operations work. Decreased communication problems,
bureaucracy, waiting overhead due to removal of manual deployment hand-offs
and organisational boundaries; Lowered human error in deployment due to
automation and making explicit knowledge of operation-related tasks to software
development

• Improvements in quality. Increased confidence in deployments and reduction of
deployment risk and stress; Improved code quality; Improved product value to
customer resulting from production feedback about users and usage.

• Improvements in organisational-wide culture and mind-set. Enrichment and
wider dissemination of DevOps in the company through discussions and
dedicated training groups ‘communities of practice’

Perceived challenges

• Insufficiencies in infrastructure automation
• High demand for skills and knowledge
• Project and resource constraints
• Difficulties in monitoring, especially for microservice-based

applications and in determining useful metrics
• Difficulties in determining a right balance between the speed

of new functionality and quality.

Summary of the findings

(i) software development team attaining ownership and responsibility
to deploy software changes in production is crucial in DevOps.
(ii) toolchain usage and support in deployment pipeline activities
accelerates the delivery of software changes, bug fixes and handling of
production incidents. (ii) the delivery speed to production is affected by
context factors, such as manual approvals by the product owner
(iii) steep learning curve for new skills is experienced by both software

developers and operations staff, who also have to cope with working
under pressure.

Leppänen, Mäkinen, Pagels, Eloranta, Itkonen, Mäntylä, Männistö
The highways and country roads to continuous deployment,
IEEE Software, vol. 32, no. 2, pp. 64-72, Mar.-Apr. 2015.
doi: 10.1109/MS.2015.50

” Interviews with 15 information and communications
technology companies revealed the benefits of
and obstacles to continuous deployment. Despite
understanding the benefits, none of the companies
adopted a fully automatic deployment pipeline.”

State of the practice (2014)

• Only one company had completely automatic pipeline to deployable
product; no one really to production
• Fastest time from code change to production

• 5min – 4 weeks
(for web application developers longest time was 1 day)

• Cycle-time to potentially deployable software
• 20min – 1 months

• Full deployment cycle
• 1 hour – 1.5 years

Perceived benefits 1/2

• Faster feedback
• to development
• From users to decision making

• More Frequent Releases
• ” less waste because the features weren’t waiting in the development

pipeline to be released.”

• Improved Quality and Productivity
• robust automated deployment with a comprehensive test suite
• reduced scope for each release

Perceived benefits 2/2

• Improved Customer Satisfaction
• new product features provided better customer service
• (reported by 5 out of 15 interviewed organiations)

• Effort Savings
• three interviewees reported
• automation saved time

• Closer Connection between Development and Operations
• only one reported !

Obstacles 1/2

• Resistance to Change
• Organization culture, management, social relations, …

• Customer Preferences
• Might be reluctant to deal with more frequent releases

• Domain Constraints
• Telecom, Medical, Embedded, …
• Distribution channels

• Developer Trust and Confidence
• Proficiency and knowledge of typical continuous-deployment practices
• Reliable automated testing (… even browser-bases apps)

About resistance

Obstacles 2/2

• Legacy Code Considerations
• Quality has decreased over time
• Not be designed to be automatically tested

• Duration, Size, and Structure
• Effort to create the pipe-line and tests is big
• In big projects the execution of tests will also take time

• Different Development and Production Environments
• Especially ”embedded”

• Manual and Nonfunctional Testing

