
DD.MM.YYYYKari Systä 1

Lecture 05

Cloud orchestration, DevOps, CD

Kari Systä
22.09.2020

DD.MM.YYYYKari Systä 2

Content

• Course practicalities
• Next exercise – orchestration
• Recap and continuation of some DevOps stuff

• How about embedded?
• Our related research

DD.MM.YYYYKari Systä 3

• 70 students returned

• Delay “penalty” 0.2p / day => maximum 1.2p (out of 7)

• In general good responses

Docker exercise

DD.MM.YYYYKari Systä 4

Programming languages

JavaScript Python Go C# Others

14
Others:
C, C++
PHP Rust
Java Julia
Haskel AWK
Racket Shell
HTML

24

25

4

4

Last year (compose exercise)

JS/node Python Golang

Next exercise: orchestration in practice

• The task is use docker_compose to ”orchestrate” a system of two
services.

• The services are simple (naïve), but you need to implement them
• You can use your favourite programming language and platform

• You have time until October 1st

What is ”cloud orchestration”?

Two results of googling
• Orchestration is the automated configuration, coordination, and

management of computer systems and software
• Cloud orchestration is the use of programming technology to manage

the interconnections and interactions among workloads on public and
private cloud infrastructure. It connects automated tasks into a
cohesive workflow to accomplish a goal, with permissions oversight
and policy enforcement.

https://en.wikipedia.org/wiki/Configuration_management
https://en.wikipedia.org/wiki/Software_deployment
https://searchcloudcomputing.techtarget.com/definition/cloud-computing
https://searchcio.techtarget.com/definition/workflow

Docker compose
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

$ docker-compose up –d
$./run_tests
$ docker-compose down

Remember pets and cattle?

YAML

• Wikipedia: YAML ("YAML Ain't Markup Language") is a human-
readable data-serialization language. It is commonly used
for configuration files

• Spaces for indentation – have a syntactical meaning
• https://www.tutorialspoint.com/yaml/yaml_basics.htm

https://en.wikipedia.org/wiki/Human-readable
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Configuration_file
https://www.tutorialspoint.com/yaml/yaml_basics.htm

YAML -> JSON
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

{
"version": "3",
"services": {
"web": {
"build": ".",
"ports": [
"5000:5000"

],
"volumes": [
".:/code",
"logvolume01:/var/log"

],
"links": [
"redis"

]
},
"redis": {
"image": "redis"

}
},
"volumes": {
"logvolume01": {}

}
}

Nice looking tutorial

• https://www.baeldung.com/docker-compose

Networking aspects

version: '3'
services:

pinger:
image: "pinger"
ports:

- "8893:8893"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_2
pingrelay:

build: "pingrelay"
ports:

- "8004:8894"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_1
networks:

pingnet:

volumes:
data: {}

[
{

"Name": "composetest_pingnet",
"Id": "42d79573d3b3cf…",
"Created": "2019-02-14T20:08:36.226402086+02:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",
"Options": null,
"Config": [

{
"Subnet": "172.20.0.0/16",
"Gateway": "172.20.0.1"

}
]

},
"Internal": false,
"Attachable": true,
"Ingress": false,
"ConfigFrom": {

"Network": ""
},
"ConfigOnly": false,
"Containers": {},
"Options": {},
"Labels": {

"com.docker.compose.network": "pingnet",
"com.docker.compose.project": "composetest",
"com.docker.compose.version": "1.23.1"

}
}

]

127.20.0.xxx

GW

172.20.0.1

LocalhostInternet

version: '3'
services:

pinger:
image: "pinger"
ports:

- "8893:8893"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_2
pingrelay:

build: "pingrelay"
ports:

- "8004:8894"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_1
networks:

pingnet:

volumes:
data: {}

Do you see ”errors”?

Data

8894

8001

8893

Something very basic

192.168.1.121

80

12345

192.168.1.120

192.168.1.120:12345 -> 192.168.1.121:80

https://microchipdeveloper.com/tcpip:tcp-ip-ports

Your task
Service/application 1 should:
• As a response to incoming Request 1 send

an HTTP GET request to Service2
• Compose a response from (4 lines of text)

• “Hello from “ + <Remote IP address and port of the incoming Request1>
“ to “ + <Local IP address and port of Service1>
Response of the above request to Service2

• Return the composed response

Service/application 2 should
• As a response to incoming Request 2 compose a response from

• “Hello from “ + <Remote IP address and port of the incoming Request2>
• “ to “ + <Local IP address and port of Service2>

• Return the composed response

• By remote address/port we means the address of the host that sent the
request. For example, in nodejs these can be tested with the following code:

http.createServer(function (req, res) {
console.log("Req came from " + req.client.remoteAddress +

":" + req.client.remotePort);
console.log("Req served at " + req.client.localAddress +

":" + req.client.localPort);
}).listen(port);

• Note that the above does not exactly meet requirements

Your task
• You should write Dockerfiles for the both services

and docker-compose.yaml to start both containers
so that Service1 is exposed in port number 8001.
The docker-compose should also create a private
network that allows Services 1 and 2 to
communicate with each other but the only external access is the HTTP-port 8001 to
Service 1.

• The service1 is assumed to be under development, so the image is rebuilt often (hint
you may use ”build:” -primitive in docker-compose.yaml. Service2 is a reused
service and you may pre-build the image. Image can be stored locally though.

• After the system is ready the student should return.
• Content of Docker and docker-compose.yaml files
• Explained response to Request 1 (that contains also response from Request 2). E.g. a

Word or PDF-file where you also explain why the addresses and port-numbers are
like they are. (We want to ensure that you understand how your program works).

• Source codes of the applications in some git.

How this will be checked

$ git clone <the git url you gave>
$ docker-compose up –build
$ curl localhost:8001
<output should follow the above requirement>
$ docker-compose down

Docker swarm - docker compose

Docker swarm

Orchestration
Docket composes

Hints

• Remember to backup your application and docker and compose files
– you will need them in the future. E.g. to gitlab.

• It might be a good idea to create and test the applications first.
• You may need to visit https://docs.docker.com/compose/ and

https://docs.docker.com/compose/networking/
• Docker images are easy to access, if they are tagged when build
• $ docker build --tag=pinger .
• If Docker image is rebuilt, docker-compose should also be given a hint

that rebuilt should override the existing one
• $ docker-compose up --build

https://docs.docker.com/compose/
https://docs.docker.com/compose/networking/

Infrastructure as code
From: https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code

Infrastructure as Code (IaC) is
• the management of infrastructure (networks, virtual machines, load

balancers, and connection topology) in a descriptive model,
• using the same versioning as DevOps team uses for source code.
• Like the principle that the same source code generates the same

binary, an IaC model generates the same environment every time it is
applied.

• IaC is a key DevOps practice and is used in conjunction
with continuous delivery.

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery

Recap

Continuous delivery and deployment
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-
continuous-deployment)

05.03.2018 28

Perceived benefits

• Improved delivery speed of software changes Improved speed in the
development and deployment of software changes to production environment.
• Improved productivity in operations work. Decreased communication problems,

bureaucracy, waiting overhead due to removal of manual deployment hand-offs
and organisational boundaries; Lowered human error in deployment due to
automation and making explicit knowledge of operation-related tasks to software
development
• Improvements in quality. Increased confidence in deployments and reduction of

deployment risk and stress; Improved code quality; Improved product value to
customer resulting from production feedback about users and usage.
• Improvements in organisational-wide culture and mind-set. Enrichment and

wider dissemination of DevOps in the company through discussions and
dedicated training groups ‘communities of practice’

Perceived challenges

• Insufficiencies in infrastructure automation
• High demand for skills and knowledge
• Project and resource constraints
• Difficulties in monitoring, especially for microservice-based

applications and in determining useful metrics
• Difficulties in determining a right balance between the speed

of new functionality and quality.

Where was the beef?

Business Development Operation Use

Business Development Operation Use

Safety critical systems (case medical systems)
T. Laukkarinen, K. Kuusinen and T. Mikkonen, "DevOps in Regulated Software Development:
Case Medical Devices," 2017 IEEE/ACM 39th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER), Buenos Aires,
2017, pp. 15-18, doi: 10.1109/ICSE-NIER.2017.20.

22.9.2020 ssss 32

IEC 62304 - Clause 5.5.3 Software unit verification
(verify before entering integration)

Continuous integration Obstacle

IEC 62304 - Clause 5.8.5 Software development procedure
(must be documented)

Development tools Benefit

IEC 62304 - Clause 5.8.6 Software release
(e.g. documents need to be ready)

Continuous deployment Obstacle

IEC 62304 - Clause 5.8.6 Deployment repeatability Deployment tools Benefit

IEC 62304 - Clause 8 Item identification Development tools Benefit

IEC 82304-1 - Clause 8.4 Post-market reporting Deployment tools Benefit

IEC 82304-1 - Clause 8.4 Updating responsibility
(customer should)

Continuous deployment Obstacle

Embedded systems

• Very little research exists
• Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Bosch, J., Olsson, H. H., & Oivo, M. (2016).

Towards DevOps in the Embedded Systems Domain: Why Is It So Hard? In 49th Hawaii
International Conference on Systems Science, pp. 5437–5446. IEEE.

22.9.2020 ssss 33

DevOps in the context of the embedded systems domain is challenging due to
• its dependency on hardware,
• limited visibility to customer environments,
• lack of deployment technology for customer-specific environments, and
• inability to get usage data from the customer environment to support the

phenomenon

Some examples of our research

Need for speed – large national project
http://n4s.dimecc.com/en/

• Delivering Value in Real Time: The Finnish software-intensive industry has renewed
their existing business and organizations towards a value-driven and adaptive real-time
business paradigm. Technical infrastructure and required capabilities have been
established to support the transformation.

• Deep Customer Insight—Better Business Hit-Rate: Software-intensive industries in
Finland are utilizing new technical infrastructure and capabilities as well as various
sources of data and information to gain and apply deep insight into customer needs and
behavior. This knowledge will enable the industry to improve sales and make significant
returns on investment in the development of both products and services.

• Mercury Business – Find the New Money: This target focuses on how companies and
societies can behave like liquid mercury, finding and flowing into new grooves. Mercury
Business is the ability to adapt to new business conditions and search aggressively for
business opportunities in new markets with minimum effort. This new approach to
business growth is enabled by continuous and active strategic focus, a new leadership
style.

This project has also impacted our teaching.
(Hopefully positively J)

http://n4s.dimecc.com/en/work-packages/paradigm-change-delivering-value-in-real-time/
http://n4s.dimecc.com/en/work-packages/deep-customer-insight/
http://n4s.dimecc.com/en/work-packages/mercury-business/

VISDOM (iteavisdom.org)

Visualisation is a powerful method for communication, especially in
cross-disciplinary communication with various stakeholders, as in
operations.
Many software development tools already provide some visualisations,
but integrated views that combine data from several sources are still at
research prototype level. The VISDOM project will develop new types
of visualisations that utilise and merge data from several data sources
in modern DevOps development. The aim is to provide simple “health
check” visualisations about the state of the development process,
software and use.

22.9.2020 ssss 36

22.9.2020 ssss 37

CD: Some technical material

22.9.2020 38

Deployment pipeline (a possible example)

22.9.2020 39

Artifact repository

22.9.2020 40

What does it really take to run CD?

14.3.2016 TIE-2210x/Kari Systä 41

Integration Test

”Build”

”Build”

”Build”

Test

Test

Test

Use

Set-up and
operate

Test
automation

VM

VM VM

VM

Set-up and
operate

Estimate &
manage costs

CI – essential practices
(according to Humbley and Farley)

• Don’t check in on a broken code
• Always run all commits tests locally before committing, or get your CI server

to do it for you
• Wait for commit tests to pass before moving on
• Never go home on a broken build
• Always be prepared to revert to the previous revisions
• Time-box fixing before reverting
• Don’t comment out failing tests
• Take responsible for all breakages that result from your changes
• Test-driven development

22.9.2020 42

Deployment essential pract.
(according to Humbley and Farley)

• Only build your binaries once
• Deploy the same way to every environment
• Smoke-test your deployments
• Deploy to copy of production
• Each change should propagate through the pipeline instantly
• If any part of pipeline fails, stop the line

22.9.2020 43

