
DD.MM.YYYYKari Systä 1

Lecture 06

Rest of DevOps, CD, Deployment,
Dependency Management

Kari Systä
29.09.2020

29.9.2020ssss 2

Schedule for coming weeks

Week Lecture Plussa exercises (deadlines)
4 / 38 15.09 Continuous deployment,

what and why
17.09 Docker compose e. opens

5 / 39 22.09 Continuous deployment,
tools and techniques

6 / 40 29.09 CD; Issues on cloud-SW:
isolation, dependency management etc

01.10 Docker compose e. closes

7/ 41 06.10 Cloud-native architectures, part 1. 05.10 Next exercise opens

X/42 Exam week

8/43 20.10 Cloud-native architectures, part 1. 19.10 Next exercise closes
20.10 Project instructions opens

Yet another technology
example:
NGINX

Incoming requests

Get
130.230.252.62

From:
xxx.xxx.xxxx.xxx:zz

To: 130.230.252.62:80
From: 127.16.0.1:yy
To: 127.16.0.11:80

From: 127.16.0.16:80
To: 127.16.0.1:yy

From:
130.230.252.62:80

To: xxx.xxx.xxxx.xxx:zz

DD.MM.YYYYKari Systä 7

But NGINX is a lot more

• Load balancer
• Content cache
• Firewall
• Authentication service
• Reverse proxy
• Network Address Translator (NAT)

N
g
i
n
x

OrionOrionOrion

OrionOrionQuantum
Leap

MongoDB

CrateDB

Grafana

Wirecloud

FIWARE Core
Component

Database

Dashboard
Component

Access control,
proxy server

CKAN

Data Management
Component

PostgreSQL

FIWARE platform architecture

FIWARE access control components
(Keyrock, Wilma and AuthZForce)
are not included in this document.

DD.MM.YYYYKari Systä 9

Forward proxy

Proxy Internet

Service

Service

Service

Clients

DD.MM.YYYYKari Systä 10

Reverse proxy

Proxy

Internet

Service

Service

Service

Clients

Proxy

Maturity models in software engineering

• The first welknown was
• Capability Maturity Model developed by Software Engineering Institute at

Carnegie Mellon University in 1986
• Five levels:

• Initial (chaotic, ad hoc, individual heroics) - the starting point for use of a new or undocumented
repeat process.

• Repeatable - the process is at least documented sufficiently such that repeating the same steps
may be attempted.

• Defined - the process is defined/confirmed as a standard business process
• Capable - the process is quantitatively managed in accordance with agreed-upon metrics.
• Efficient - process management includes deliberate process optimization/improvement.

• Practical meaning may be questioned, but there has been many followers.

29.9.2020 ssss 11

https://en.wikipedia.org/wiki/Business_process

Maturity models
(https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/)

• Base: The base level is enough to “be on the model”. The team has left fully
manual processes behind.
• Beginner: At the beginner level, the team is trying to adopt some ECD practices in

earnest but is still performing them at a rudimentary level.
• Intermediate: Practices are somewhat mature and are delivering fewer errors

and more efficiency. For many teams, Intermediate practices may be sufficient.
• Advanced: The team is doing something well beyond what most of the rest of the

industry and is seeing a great deal of efficiency and error prevention as a result.
• Extreme: Elements within the Extreme category are ones that are expensive to

achieve but for some teams should be their target. Put another way, most
organizations would be crazy to implement them, while this minority would be
crazy to not implement them.

Another
(https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model/)

Base … started to prioritize work in backlogs, have some process defined which is rudimentarily documented
and developers are practicing frequent commits into version control.

Beginner … teams stabilize over projects and the organization has typically begun to remove boundaries by
including test with development. Multiple backlogs are naturally consolidated into one per team and basic
agile methods are adopted ….
Intermediate … extended team collaboration when e.g. DBA, CM and Operations are beginning to be a part
of the team or at least frequently consulted by the team. Multiple processes are consolidated and all
changes, bugs, new features, emergency fixes, etc, follow the same path to production. Decisions are
decentralized to the team and component ownership…

Advanced … team will have the competence and confidence it needs to be responsible for changes all the
way to production. Continuous improvement mechanisms are in place … releases of functionality can be
disconnected from the actual deployment, which gives the projects a somewhat different role. A project can
focus on producing requirements for one or multiple teams and when all or enough of those have been
verified and deployed to production the project can plan and organize the actual release to users separately.

Expert …some organizations choose to make a bigger effort and form complete cross functional teams that
can be completely autonomous. With extremely short cycle time and a mature delivery pipeline, such
organizations have the confidence to adopt a strict roll-forward only strategy to production failures.

Another
(https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model/)

Base … one or more legacy systems of monolithic nature in terms of development, build and release. Many
organizations at the base maturity level will have a diversified technology stack but have started to
consolidate … to get best value from the effort spent on automation.
Beginner … the monolithic structure of the system is addressed by splitting the system into modules … this
will also naturally drive an API managed approach to describe internal dependencies and also influence
applying a structured approach to manage 3rd party libraries … importance of applying version control to
database changes will also reveal itself.
Intermediate. … a solid architectural base for continuous delivery … feature hiding for the purpose of
minimizing repository branching to enable true continuous integration. … modularization will evolve into
identifying and breaking out modules into components that are self-contained and separately deployed. …
start migrating scattered and ad-hoc managed application and runtime configuration into version control
and treat it as part of the application just like any other code.
Advanced. … split the entire system into self contained components and adopted a strict api-based
approach to inter-communication so that each component can be deployed and released individually …
every component is a self-contained releasable unit with business value, you can achieve small and frequent
releases and extremely short release cycles..
Expert … some organizations will evolve the component based architecture further and value the perfection
of reducing as much shared infrastructure as possible by also treating infrastructure as code and tie it to
application components. The result is a system that is totally reproducible from source control, from the O/S
and all the way up to application. …

Simplified pipeline

Develop
& test

Build Pack Deploy OperateVMS Test

C++
Python

Build – which tools you know ?
• Make
• Old
• Declarative
• Hard to debug

• Ant
• Designed for Java
• Based on XML-based configuration language

• Maven

https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-
model/

BUILDING

Testing
• Automate, automate, automate
• Know any tools?

AUTOMATED

(functional
acceptance tests)

Unit tests
Integration tests

System tests

AUTOMATED

MANUAL

Showcase
Usability testing

Exploratory testing
Nonfunctonal

acceptance tests

MANUAL/AUTOM.

Business

Technology

Support
coding

Critique
project

https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-
model/

TESTING

Pack

• Binaries
• Required Libraries
• Runtime (e.g. Python)
• Manifest file
• Help files
• Localization stuff
• …

•Examples
•Windows install shield
• Java JAR
•Android APK

What else comes
to mind?

Deployment/Delivery

• Humble and Farley write
• Creating the infrastructure (hardware, networking, middleware, …)
• Installing correct version of the application
• Configuring the application with its data

• Sounds a bit difficult?
• Text written before 2011
• First Docker release 2013

Develop
& test

Build Pack Deploy OperateVMS Test

App Developer

App users

App

App
v2

A possible strategy to deploy a
new version?

App

App
v2

App

App

App
v2

GW

Problems & issues?

https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-
model/

DEPLOYING

https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-
model/

REPORTING

Deployment strategies

• Basic Deployment (aka Suicide) (https://harness.io/2018/02/deployment-
strategies-continuous-delivery/) all nodes are updated at the same time
• Rolling Deployment (https://harness.io/2018/02/deployment-strategies-

continuous-delivery/) nodes are updated incrementally,
• BlueGreenDeployment

(http://martinfowler.com/bliki/BlueGreenDeployment.html) uses a router of
incoming traffic as the tool. In this approach the new version (called green) is set
up in parallel with the current (blue). When new (green) is ready, the router is
switched to new (green) and blue is left as a backup. If something goes wrong
with new, the router can be switched back to old - that means easy “rollback”.
• Canary Releases (http://martinfowler.com/bliki/CanaryRelease.html) implements

the deployment incrementally. In this case the router first directs only part of the
customers to the new version. If feedback is is good, the other customers are
moved to new version, too

https://harness.io/2018/02/deployment-strategies-continuous-delivery/
https://harness.io/2018/02/deployment-strategies-continuous-delivery/
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/CanaryRelease.html

How about the data?

App

App v2

App

App v2Creation and
initialization

Data migration

• Versions of the data bases
• Data migration scripts are needed.
• Rollback need to be possible

How about test data base?

Develop
& test

Build Pack Deploy OperateVMS Test App

Sidenote: DataOps

• DataOps is a set of practices, processes and technologies that
combines an integrated and process-oriented perspective on data
with automation and methods from agile software engineering to
improve quality, speed, and collaboration and promote a culture of
continuous improvement.

• DataOps includes the methods, tools, and will on the organizational level that have as a
goal helping data and analytics team(s) better understand the data requirements of the
whole organization. Achieving this leads to the needed data being provided when
needed, in suitable format, and at quicker pace to those who need it.

• As a whole, DataOps seeks to make the analytics workflow more agile. For this, a will and
methods are very likely needed, and quite likely using or developing new software tools.
Where new software tools are required is likely automating and monitoring the data
delivery pipeline as much as possible.

DataOps

Roles and responsibilities (from DataOps Cookbook):
• Data Engineer - databases, programming
• responsibilities: storing data, schemas

• DataOps Engineer - Agile development, DevOps, Statistical Process Control
• responsibilities: orchestrating the analytics pipeline, automating quality

• Data Analyst - statistics, programming
• responsibilities: reports, visualization

• Data Scientist - domain subject matter expert
• responsibilities: models, algorithms

When testing becomes serious
business

• Running tests start to take time

ÞTest case selection
ÞTest case prioritization

Unix/Linux

Clib

Application

Unix/Linux

Clib

JavaScript

Nodejs

Libraries

Application

Remember container use case example

• Your application needs
• Certain version of nodejs
• Set of libraries (certain versions)
• Mongo database

29.9.2020 ssss 37

• Your system has
• Wrong version of nodejs
• Mongo serving another application

• Solution
• Create a docker image (container)
• Install the image
• Run the image

2011: Base images used in exercise 4

• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

2011: Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

node:<version>
This is the defacto image. If you are unsure about
what your needs are, you probably want to use
this one. It is designed to be used both as a throw
away container (mount your source code and
start the container to start your app), as well as
the base to build other images off of.

• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

node:<version>-slim
This image does not contain the common packages
contained in the default tag and only contains the
minimal packages needed to run node. Unless you are
working in an environment where only the node image
will be deployed and you have space constraints, we
highly recommend using the default image of this
repository.

• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

node:<version>-alpine

This image is based on the popular Alpine Linux project, available in the
alpine official image. Alpine Linux is much smaller than most
distribution base images (~5MB), and thus leads to much slimmer
images in general.

This variant is highly recommended when final image size being as
small as possible is desired. The main caveat to note is that it does use
musl libc instead of glibc and friends, so certain software might run
into issues depending on the depth of their libc requirements.
However, most software doesn't have an issue with this, so this variant
is usually a very safe choice. See this Hacker News comment thread for
more discussion of the issues that might arise and some pro/con
comparisons of using Alpine-based images.

• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

Some of these tags may have names like buster, jessie, or
stretch in them. These are the suite code names for
releases of Debian and indicate which release the image is
based on. If your image needs to install any additional
packages beyond what comes with the image, you'll likely
want to specify one of these explicitly to minimize breakage
when there are new releases of Debian.

Browser client Headless client

Web (HTTP)
server

Application server

Database

Other parts of the
information system

Cloud

Browser client

Web (HTTP) server

service

Database

Other parts of the
information system

Cloud

service

service

Different implementations
Updated ”whenever”

Different run-times and
programming languagesDeployed independently

Browser client

Web (HTTP) server

service

Database

Other parts of the
information system

Cloud

service

service

<script “…”>
Protocol-related changes

