
DD.MM.YYYYKari Systä 1

Lecture 07

Rest of DevOps, CD, Deployment,
Dependency Management

Kari Systä
06.10.2020

15.10.2020ssss 2

Schedule for coming weeks

Week Lecture Plussa exercises (deadlines)
4 / 38 15.09 Continuous deployment,

what and why
17.09 Docker compose e. opens

5 / 39 22.09 Continuous deployment,
tools and techniques

6 / 40 29.09 CD; Issues on cloud-SW:
isolation, dependency management etc

01.10 Docker compose e. closes

7/ 41 06.10 Cloud-native architectures, part 1. 05.10 Next exercise opens

X/42 Exam week

8/43 20.10 Cloud-native architectures, part 1. 19.10 Next exercise closes
20.10 Project instructions opens

DD.MM.YYYYKari Systä 3

Course practicalities
• Cloud exercise was returned by 70
• Compose execise was returned by 52+4
• Next exerise will be about message-queue communication

Dependency management

15.10.2020 ssss 4

https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html

The old way

Static approach
• Libraries come with the compiler, or

are intalled to the development tool
• Compiler integrates application with

libraries
• The integrated system is deployed

to users

The Web & Cloud way

Dynamic approach
• Libraries are downloaded in a

dynamic manner
• Huge number of libraries available,

use each other, and are frequently
updates (continuous delivery)

• npm
• pip

Package.json
{

"name": "service1",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC",
"dependencies": {

"express": "4.17.1",
"request": "2.88.0"

}
}

Development vs use

Test
Test

npm install … npm install …

Test

npm install …

Deploy

npm install …

Use

Test Deploy Use

package-lock.json is automatically generated for any operations where npm
modifies either the node_modules tree, or package.json. It describes the
exact tree that was generated, such that subsequent installs are able to
generate identical trees, regardless of intermediate dependency updates.
This file is intended to be committed into source repositories, and serves
various purposes:
• Describe a single representation of a dependency tree such that

teammates, deployments, and continuous integration are guaranteed to
install exactly the same dependencies.
• Provide a facility for users to “time-travel” to previous states

of node_modules without having to commit the directory itself.
• To facilitate greater visibility of tree changes through readable source

control diffs.
• And optimize the installation process by allowing npm to skip repeated

metadata resolutions for previously-installed packages.

Package.json
{

"name": "service1",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC",
"dependencies": {

"express": "4.17.1",
"request": "2.88.0"

}
}

• Does not say anything about versions of packages
used by express and request

• Allows use of later versions

• What is a possible problem with this?

Package-lock.json

npm ls

Nodejs has also changed (for example)
2018-10-23, Version 11.0.0 (Current), @jasnell
Notable Changes
Build

FreeBSD 10 is no longer supported. #22617
child_process

The default value of the windowsHide option has been changed to true. #21316
console

console.countReset() will emit a warning if the timer being reset does not
exist. #21649
console.time() will no longer reset a timer if it already exists. #20442

Dependencies
V8 has been updated to 7.0. #22754

fs
The fs.read() method now requires a callback. #22146
The previously deprecated fs.SyncWriteStream utility has been removed.#20735

https://github.com/nodejs/node/pull/22617
https://github.com/nodejs/node/pull/21316
https://github.com/nodejs/node/pull/21649
https://github.com/nodejs/node/pull/20442
https://github.com/nodejs/node/pull/22754
https://github.com/nodejs/node/pull/22146
https://github.com/nodejs/node/pull/20735

Npm versions
• 6.12.0 15 days ago
• 6.12.0-next.0 a month ago
• 6.11.3 2 months ago
• 6.11.2 2 months ago
• 6.11.1 2 months ago
• 6.11.0 2 months ago
• 6.10.3 3 months ago
• 6.10.2 3 months ago

• 6.14.8 latest
• 6.14.7 2 months ago
• 6.14.6 3 months ago
• 6.14.5 5 months ago
• 6.14.4 6 months ago
• 6.14.3 6 months ago
• 6.14.2 7 months ago
• 6.14.1 7 months ago
• 6.14.0 7 months ago
• 6.13.7 8 months ago
• 6.13.6 9 months ago
• 6.13.5 9 months ago
• 6.13.4 10 months ago
• 6.13.3 10 months ago

https://www.npmjs.com/package/npm/v/6.12.0
https://www.npmjs.com/package/npm/v/6.12.0-next.0
https://www.npmjs.com/package/npm/v/6.11.3
https://www.npmjs.com/package/npm/v/6.11.2
https://www.npmjs.com/package/npm/v/6.11.1
https://www.npmjs.com/package/npm/v/6.11.0
https://www.npmjs.com/package/npm/v/6.10.3
https://www.npmjs.com/package/npm/v/6.10.2
https://www.npmjs.com/package/npm/v/6.14.7
https://www.npmjs.com/package/npm/v/6.14.7
https://www.npmjs.com/package/npm/v/6.14.6
https://www.npmjs.com/package/npm/v/6.14.5
https://www.npmjs.com/package/npm/v/6.14.4
https://www.npmjs.com/package/npm/v/6.14.3
https://www.npmjs.com/package/npm/v/6.14.2
https://www.npmjs.com/package/npm/v/6.14.1
https://www.npmjs.com/package/npm/v/6.14.0
https://www.npmjs.com/package/npm/v/6.13.7
https://www.npmjs.com/package/npm/v/6.13.6
https://www.npmjs.com/package/npm/v/6.13.5
https://www.npmjs.com/package/npm/v/6.13.4
https://www.npmjs.com/package/npm/v/6.13.3

New in NPM 5

2. Lockfiles
With npm@5, lockfiles are the default (package-lock.json). This simply
means that whatever files you get when you install a package will be
the same every time you install that package after initial install. This
eliminates the challenges developers had with having different files on
different developer environments after installing the same package.

And the language (ECMAScript / JavaScript)
ES5 (2009)
• This is the baseline version of JS which

you can generally assume all run-times
(except really old ones!) will support.

ES6 / ES2015
• Standard Modules — import and export
• Standardised Promises
• Classes & Inheritance
• Block-scoped variables — let and const
• Template Literals
• Object destructing into variables
• Generator functions
• Map and Set data structures
• Internationalisation for Strings, Numbers

and Dates via Intl API

ES7 / ES2016
• Array.includes()
• Numeric exponent (power of) operator **
ES8 / ES2017
• Async Functions
• Object.entries
• String padding functions
ES9 / ES2018
• Object Rest/Spread const obj = { ...props };
• Asynchronous Iteration for await (...) {
• Promise finally() function
• Regular expression enhancements

(lookbehind, named groups)

Development vs use

Test
Test

npm install … npm install …

Test

npm install …

Deploy

npm install …

Use

Test Deploy Use

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

git clone ..
docker-compose up

Towards solutions?

• Build a docker image and deploy that?

• Use package-lock.json and installation scripts?

Other systems, like Pyhton and golang

• Python
• Virtual environments
• PIP

• Golang
• go get ..

15.10.2020 ssss 21

Cloud-native applications and
architectures

Some definitions

• If an app is "cloud-native," it’s specifically designed to provide a consistent
development and automated management experience across private,
public, and hybrid clouds.
• A native cloud application (NCA) is a program that is designed specifically

for a cloud computing architecture.
NCAs are designed to take advantage of cloud computing frameworks,
which are composed of loosely-coupled cloud services. That means that
developers must break down tasks into separate services that can run on
several servers in different locations. Because the infrastructure that
supports a native cloud app does not run locally, NCAs must be planned
with redundancy in mind so the application can withstand equipment
failure and be able to re-map IP addresses automatically should hardware
fail.

Some links

• 10 Key Attributes of Cloud-native Applications, <https://thenewstack.io/10-
key-attributes-of-cloud-native-applications/>
• What are cloud-native applications?

<https://opensource.com/article/18/7/what-are-cloud-native-apps>
• Native cloud application (NCA),

<https://searchitoperations.techtarget.com/definition/native-cloud-
application-NCA>
• Understanding cloud-native applications,

<https://www.redhat.com/en/topics/cloud-native-apps>
• David S. Linthicum, Cloud-Native Applications and Cloud Migration: The

Good, the Bad, and the Points Between, IEEE Cloud Computing, December
2017.

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://opensource.com/article/18/7/what-are-cloud-native-apps
https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA
https://www.redhat.com/en/topics/cloud-native-apps

Some links• 10 Key Attributes of Cloud-native Applications, <https://thenewstack.io/10-
key-attributes-of-cloud-native-applications/>
• What are cloud-native applications?

<https://opensource.com/article/18/7/what-are-cloud-native-apps>
• Native cloud application (NCA),

<https://searchitoperations.techtarget.com/definition/native-cloud-
application-NCA>
• Understanding cloud-native applications,

<https://www.redhat.com/en/topics/cloud-native-apps>
• David S. Linthicum, Cloud-Native Applications and Cloud Migration: The

Good, the Bad, and the Points Between, IEEE Cloud Computing, December
2017.

1. Packaged as lightweight containers
2. Developed with best-of-breed languages and frameworks
3. Designed as loosely coupled microservices
4. Centered around APIs for interaction and collaboration
5. Architected with a clean separation of stateless and stateful

services
6. Isolated from server and operating system dependencies
7. Deployed on self-service, elastic, cloud infrastructure
8. Managed through agile DevOps processes
9. Automated capabilities
10.Defined, policy-driven resource allocation

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://opensource.com/article/18/7/what-are-cloud-native-apps
https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA
https://www.redhat.com/en/topics/cloud-native-apps

David S. Linthicum, Cloud-Native Applications and Cloud
Migration: The Good, the Bad, and the Points Between,
IEEE Cloud Computing, December 2017

• Performance. You’ll typically be able to access provide better performance than is
possible with nonnative features. For example, you can deal with an input/output
(I/O) system that works with autoscaling and loadbalancing features.
• Efficiency. Cloud-native applications’ use of cloud-native features and application

programming interfaces (APIs) should provide more efficient use of underlying
resources. That translates to better performance and/or lower operating costs.
• Cost. Applications that are more efficient typically cost less to run. Cloud

providers send you a monthly bill based upon the amount of resources
consumed, so if you can do more with less, you save on dollars spent.
• Scalability. Because you write the applications to the native cloud interfaces, you

have direct access to the autoscaling and load-balancing features of the cloud
platform.

More about that later in the
course

15.10.2020 ssss 27

… instead now some bottom-up
to help you in the next excersise

15.10.2020 ssss 28

Back to old picture

15.10.2020 ssss 29

Request

Request

Response

Response

Address

Corner-stones of REST
• Client-server architecture
• Separation of concerns

• Statelessness
• no client context being stored on the server between requests

• Cacheability

• Layered system
• Client does not know if connected to other end directly

• Uniform interface

Do not call your design for previous exercise REST!

Uniform representation

• Resource identification in requests
• URIs
• Separated from representation (XML, JSON,…)

• Resource manipulation through representations
• Self-descriptive messages
• Hypermedia as the engine of application state (HATEOAS)
• Application to HTTP
• URL’s
• GET, PUT, POST, DELETE
• MIME-types

https://en.wikipedia.org/wiki/HATEOAS

Message-bus instead of HTTP

• Challenges: increased network operations, tight service coupling
• Message bus helps to define how services communicate, service

discovery reduces operational complexity
• Asynchronous messaging leads to
• loosed coupling
• More complex logic (async is a cousin of parallelism)

• Actually, there are multiple options
• RPC, REST, Asynchronous message, application-specific protocols

But the ”calls” can be laborous

let message = "Hello from " + req.client.remoteAddress + ":" +
req.client.remotePort + " to " + req.client.localAddress + ":" +
req.client.localPort;

request('http://server2:4000/getServer’, { json: true },
(err, response, body) => {

if (err) {
return console.log(err);

}
res.send(message + " " + body); });

The message bus approach

15.10.2020 ssss 34

Message bus middleware for loose coupling

Common understanding
of the data.
(Common data model)

RabbitMQ

• An example of message queue technology
• Can be used to implement various architectures

15.10.2020 ssss 35

Examples of RabbitMQ use
https://www.rabbitmq.com/getstarted.html

15.10.2020 ssss 36

Simple queue Task distribution Publish/subscribe

Routing Topics

Publish-subscribe

15.10.2020 ssss 37

Message queue

15.10.2020 ssss 38

An example of topic-based communication
(adopted from https://www.rabbitmq.com/tutorials/tutorial-five-python.html)

15.10.2020 ssss 39

P1

P2

X

.orange.

lazy.#
..rabbit

quick.orange.fox quick.orange.fox

lazy.brown.fox

lazy.brown.fox

lazy.orange.elephant

lazy.orange.elephant

lazy.orange.elephant
quick.brown.fox

RabbitMQ – steps in practice

Connect
Create Channel
Send
Wait…
Close

Connect
Create Channel
Consume

https://www.rabbitmq.com/tutorials/tutorial-
one-javascript.html
This tutorial assumes RabbitMQ is installed and
running on localhost on standard port (5672). In
case you use a different host, port or credentials,
connections settings would require adjusting.

https://www.rabbitmq.com/download.html

Next exercise

You create a bigger system of several processes and message queue
infrastructure
Grading policy:

• maximum 6 points are given (total of the course will be about 50)
• missing the deadline: points reduced by 0.5 points / day
• how well the requirements are met: 2p
• following the good programming and docker practices: 2p
• quality of the document: 2p

Deadline:
• Mon, Oct 5 2020, 6 p.m. – Mon, Oct 19 2020, noon

Late submissions are allowed until Sat, Oct 31 2020, 11:59 p.m. but points
are only worth 70%.

15.10.2020 ssss 41

15.10.2020 ssss 42

gRPC

Service

gRPC
service

Client 1

Stub

Client 2

Stub

Request

Response

API definition
with IDL

Example API description

service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}
// Sends another greeting
rpc SayHelloAgain (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest { string name = 1; }

// The response message containing the greetings message
HelloReply { string message = 1; }

Call in JavaScript and Python

And C++

RapidMQ

Connect
Create Channel
Send
Wait…
Close

Connect
Create Channel
Consume

https://www.rabbitmq.com/tutorials/tutorial-
one-javascript.html
This tutorial assumes RabbitMQ is installed and
running on localhost on standard port (5672). In
case you use a different host, port or credentials,
connections settings would require adjusting.

https://www.rabbitmq.com/download.html

