
DD.MM.YYYYKari Systä 1

Lecture 08

Cloud Native – part 2

Kari Systä
20.10.2020

25.10.2020ssss 2

Schedule for coming weeks
Week Lecture Plussa exercises (deadlines)
8/43 20.10 Cloud-native architectures part 2 19.10 Next exercise closes

25.10 Project instructions opens
9/44 27.10 Inroduction to project, Gitlab CI

10/45 01.11 Testing and testing automation

11/46 10.11 Guest Lecture, CD pipeline at cargotec

12/47 17.11

13/48 24.11

14/40 01.12

DD.MM.YYYYKari Systä 3

Course practicalities
• Cloud exercise was returned by 70
• Compose exercise was returned by 52+4
• Message-queue communication has been returned by 42 so far.

• I have now checked all the compose-exercises and will give feedback in Plussa in coming days.
• A few notes

• Clearly over half of systems worked for me “as such”.
• Surprisingly many students used volume to make application code visible – in addition to

installing it. This is obviously wrong.
• Seems that many systems based on Microsoft technologies are probably created with some

IDE. => a lot of “boilerplate code”.
• With some libraries, e.g. Flask, it is difficult to fulfil the criteria.
• We are on a way to automize the first-line checking => please follow the instructions

carefully

DD.MM.YYYYKari Systä 4

A job opportunity

“I have a position for an MSc. Thesis:

- https://ats.talentadore.com/apply/Master%27s-Thesis-
Worker%2C-Web-based-Graphical-Programming-
Environment-for-Connected-Factories/ZQxVW8

If you have some student you would like to refer, please let
me know.
”

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fats.talentadore.com%2Fapply%2FMaster%2527s-Thesis-Worker%252C-Web-based-Graphical-Programming-Environment-for-Connected-Factories%2FZQxVW8&data=02%7C01%7CAli.Muhammad%40vtt.fi%7C63c23afda3d5450e3eba08d871d4959f%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637384505146591509&sdata=uxwE4Rw0g5pWSgXwkb1SY8JzugK1fvV%2Bhq%2Bz%2BvxtjR0%3D&reserved=0

More about cloud-native
architectures

25.10.2020 ssss 5

Com
m

unination

REST MQ

(g)RPC graphQL

API Gateway

Structute and
deploym

ent

Micro-
services FaaS

25.10.2020 ssss 6

DD.MM.YYYYKari Systä 7

WHAT IS ESSENTIAL OF REST

?

DD.MM.YYYYKari Systä 8

Architectural principles of REST
• Client-server architecture

• Statelessness
• Everybody gets same answer
• Repeated operation (GET, PUT) does not have an effect

• Cacheability
• For performance and scalability

• Layered system
• Allows proxies etc

• Uniform interface

DD.MM.YYYYKari Systä 9

Uniform interface
• Everything is a resource that is fetched, modified, created, deleted

• CRUD = CREATE, READ, UPDATE, DELETE
• HTTP verbs: GET, PUT, POST, DELETE
• Resource manipulation through representations

• Resource identification in requests
• URIs
• Separated from representation (XML, JSON,…)
• MIME-types

• Self-descriptive messages
• Hypermedia as the engine of application state (HATEOAS)

https://en.wikipedia.org/wiki/HATEOAS

But the ”calls” can be laborous

let message = "Hello from " + req.client.remoteAddress + ":" +
req.client.remotePort + " to " + req.client.localAddress + ":" +
req.client.localPort;

request('http://server2:4000/getServer’, { json: true },
(err, response, body) => {

if (err) {
return console.log(err);

}
res.send(message + " " + body); });

DD.MM.YYYYKari Systä 11

gRPC – RPC over HTTP

Service

gRPC
service

Client 1

Stub

Client 2

Stub

Request

Response

API definition
with IDL

Example API description

service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}
// Sends another greeting
rpc SayHelloAgain (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest { string name = 1; }

// The response message containing the greetings message
HelloReply { string message = 1; }

Call in JavaScript and Python

And C++

Message-bus instead of HTTP

• Challenges: increased network operations, tight service coupling
• Message bus helps to define how services communicate, service

discovery reduces operational complexity
• Asynchronous messaging leads to

• loosed coupling
• More complex logic (async a cousin of parallelism)

• Actually, there are multiple options
• RPC, REST, Asynchronous message, application-specific protocols

Consequences

Independent
development

Independent
deployment

Minimum centralized
management

REST

gRPC

Message queue

Consequences

Independent
development

Independent
deployment

Minimum centralized
management

REST

gRPC

Message queue

Standard ways to document
Designed for intependent

Designed for
intependent

Can be used in many ways

Practically none on top of
Network infra

No standards: need to be
agreed on

The message queue need to
be maintained

The queue even suppors
interrupts

Practically none on
top of

Network infra

Let’s have another thinking
exercise

GraphQL(examples from
https://medium.com/tech-tajawal/backend-for-frontend-using-graphql-under-microservices-5b63bbfcd7d9)

• REST request
GET http://127.0.0.1/api/accounts

• Response
[

{
"id": 88,
"name": "Mena Meseha",
"photo": "http://..m/photo.jpg"

},
...
]

• GraphQL request
POST http://127.0.0.1/graphql
• Payload
query {accounts {id, name, photo}}
• Response
{
"data": {
"accounts": [{
"id": 88,
"name": "Mena Meseha",
"photo":
"http://...com/photo.jpg"

},
...
]

}
}

http://127.0.0.1/api/accounts
http://127.0.0.1/graphql

Let’s analyze some claims of the previous source

• 1. Data Acquisition: REST lacks scalability and GraphQL can be accessed on
demand. The payload can be extended when the GraphQL API is called.
• 2. API calls: REST’s operation for each resource is an endpoint, and

GraphQL only needs a single endpoint, but the post body is not the same.
• 3. Complex data requests: REST requires multiple calls for nested complex

data, GraphQL calls once, reducing network overhead.
• 4. Error code processing: REST can accurately return HTTP error code,

GraphQL returns 200 uniformly, and wraps error information.
• 5. Version number: REST is implemented via v1/v2, and GraphQL is

implemented through the Schema extension.

25.10.2020 ssss 21

How about external calls?

Client
API

gateway

Client2

RECALL Interface segregation principle

“many client-specific interfaces are better than one general-purpose interface.”
“Make fine grained interfaces that are client specific”
“Clients should not be forced to depend upon methods they do not use”
• Big system with many dependencies = small change causes changed everywhere
• Large interfaces are split to smaller and role-base interfaces.

Þchanges do not affect everybody
ÞNew features are easier to add
ÞInterfaces are easier to learn

25.10.2020 23

From Twitter

• https://microservices.io/patterns/apigateway.html
• https://whatis.techtarget.com/definition/API-gateway-application-

programming-interface-gateway

https://microservices.io/patterns/apigateway.html
https://whatis.techtarget.com/definition/API-gateway-application-programming-interface-gateway

API gateway pattern
https://microservices.io/patterns/apigateway.html

Problem
• How do the clients of a Microservices-based application access the individual services?
Forces
• The granularity of APIs provided by microservices is often different than what a client

needs and too fine grained.
• Different clients need different data.
• Network performance is different for different types of clients.
• Partitioning into services can change over time and should be hidden from clients
• Services might use a diverse set of protocols, some of which might not be web friendly
Solution
• Implement an API gateway that is the single entry point for all clients. The API gateway

handles requests in one of two ways. Some requests are simply proxied/routed to the
appropriate service. It handles other requests by fanning out to multiple services.

https://microservices.io/patterns/apigateway.html

Other patterns
Application architecture patterns
• Which architecture should you choose for an application?
Decomposition
• How to decompose an application into services?
Data management
• How to maintain data consistency and implement queries?
Transactional messaging
• How to publish messages as part of a database transaction?
Testing
• How to make testing easier?
Deployment patterns
• How to deploy an application’s services?
Cross cutting concerns
• How to handle cross cutting concerns?
Communication patterns

More about cloud-native architectures

25.10.2020 ssss 28

Com
m

unination

REST MQ

(g)RPC graphQL

API Gateway

Structute and
deploym

ent

Micro-
services FaaS

Cloud-native applications and
architectures

Some definitions

• If an app is "cloud-native," it’s specifically designed to provide a consistent
development and automated management experience across private,
public, and hybrid clouds.
• A native cloud application (NCA) is a program that is designed specifically

for a cloud computing architecture.
NCAs are designed to take advantage of cloud computing frameworks,
which are composed of loosely-coupled cloud services. That means that
developers must break down tasks into separate services that can run on
several servers in different locations. Because the infrastructure that
supports a native cloud app does not run locally, NCAs must be planned
with redundancy in mind so the application can withstand equipment
failure and be able to re-map IP addresses automatically should hardware
fail.

Some links

• 10 Key Attributes of Cloud-native Applications, <https://thenewstack.io/10-
key-attributes-of-cloud-native-applications/>
• What are cloud-native applications?

<https://opensource.com/article/18/7/what-are-cloud-native-apps>
• Native cloud application (NCA),

<https://searchitoperations.techtarget.com/definition/native-cloud-
application-NCA>
• Understanding cloud-native applications,

<https://www.redhat.com/en/topics/cloud-native-apps>
• David S. Linthicum, Cloud-Native Applications and Cloud Migration: The

Good, the Bad, and the Points Between, IEEE Cloud Computing, December
2017.

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://opensource.com/article/18/7/what-are-cloud-native-apps
https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA
https://www.redhat.com/en/topics/cloud-native-apps

Some links• 10 Key Attributes of Cloud-native Applications, <https://thenewstack.io/10-
key-attributes-of-cloud-native-applications/>
• What are cloud-native applications?

<https://opensource.com/article/18/7/what-are-cloud-native-apps>
• Native cloud application (NCA),

<https://searchitoperations.techtarget.com/definition/native-cloud-
application-NCA>
• Understanding cloud-native applications,

<https://www.redhat.com/en/topics/cloud-native-apps>
• David S. Linthicum, Cloud-Native Applications and Cloud Migration: The

Good, the Bad, and the Points Between, IEEE Cloud Computing, December
2017.

1. Packaged as lightweight containers
2. Developed with best-of-breed languages and frameworks
3. Designed as loosely coupled microservices
4. Centered around APIs for interaction and collaboration
5. Architected with a clean separation of stateless and stateful

services
6. Isolated from server and operating system dependencies
7. Deployed on self-service, elastic, cloud infrastructure
8. Managed through agile DevOps processes
9. Automated capabilities
10.Defined, policy-driven resource allocation

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://opensource.com/article/18/7/what-are-cloud-native-apps
https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA
https://www.redhat.com/en/topics/cloud-native-apps

David S. Linthicum, Cloud-Native Applications and Cloud
Migration: The Good, the Bad, and the Points Between,
IEEE Cloud Computing, December 2017

• Performance. You’ll typically be able to access provide better performance than is
possible with nonnative features. For example, you can deal with an input/output
(I/O) system that works with autoscaling and loadbalancing features.

• Efficiency. Cloud-native applications’ use of cloud-native features and application
programming interfaces (APIs) should provide more efficient use of underlying
resources. That translates to better performance and/or lower operating costs.

• Cost. Applications that are more efficient typically cost less to run. Cloud
providers send you a monthly bill based upon the amount of resources
consumed, so if you can do more with less, you save on dollars spent.

• Scalability. Because you write the applications to the native cloud interfaces, you
have direct access to the autoscaling and load-balancing features of the cloud
platform.

https://martinfowler.com/articles/microservices.html

the microservice architectural style is an
approach to developing a single
application as a suite of small services,
each running in its own process and
communicating with lightweight
mechanisms, often an HTTP resource API.
These services are built around
business capabilities and
independently deployable by fully
automated deployment machinery.
There is a
bare minimum of centralized management
of these services, which may be written in
different programming languages and use
different data storage technologies.

I. Nadareishvili et al., Microservice
Architecture: Aligning Principles,
Practices, and Culture, O’Reilly, 2016.
• small
• messaging enabled,
• bounded by contexts,
• autonomously developed,
• independently deployable,
• decentralized, and
• built and released with automated

processes.

25.10.2020
34

https://martinfowler.com/articles/microservices.html

Build around business capabilities?
• A way to split monolith to micro services
• Traditional SOA way is to look at static or dynamic dependencies

• And minimize inter-service calls

• Should support independent development:
• Any organization that designs a system (defined broadly) will produce a

design whose structure is a copy of the organization's communication
structure.

• -- Melvyn Conway, 1967

• Should support independent deployment
• Testing
• Timing

Build around business capabilities?

Independent development

• Separate team
• Two pizza rule
• Scrum propose 7±2
• Small team is more effcient

• Independently selected
• Run-time
• Libraries
• Programming language

• Or, arrogant developers want to use their own favorite?

Independent deployment

Develop

& test

Build

Pack
Deplo

y

Opera
t

e

VMS

Test

Develop& test

Build

Pack

Deploy
Operate

VMS

Test

What becomes easier?

What gets more difficult?

End of 20.10 lecture

25.10.2020 ssss 41

