
DD.MM.YYYYKari Systä 1

Lecture 09

Project; GitLab CI; Cloud Native – part 3

Kari Systä
27.10.2020

20.10.2020ssss 2

Schedule for coming weeks
Week Lecture Plussa exercises (deadlines)
8/43 20.10 Cloud-native architectures part 2 19.10 Next exercise closes

25.10 Project instructions opens
9/44 27.10 Inroduction to project, Gitlab CI

10/45 01.11 Testing and testing automation

11/46 10.11 Guest Lecture, CD pipeline at cargotec

12/47 17.11

13/48 24.11

14/40 01.12

DD.MM.YYYYKari Systä 3

Master-thesis opportunities

• www.lansio.com
• Math and SW for optimizing delivery work

• University and company collaboration
• CO2 footprint analysis application for energy systems

• University research project
• Visualization of DevOps projects.

DD.MM.YYYYKari Systä 4

Course practicalities
• Cloud exercise was returned by 70
• Compose exercise was returned by 52+4
• Message-queue communication has been returned by 50

• I have now checked most the compose-exercises and feedback given
• Clarification requests will be handled later this week

DD.MM.YYYYKari Systä 5

Project

API
Gateway

Develop
& test

Build Pack Deploy OperateVMS Test

DD.MM.YYYY
Kari Systä

6

Two options: individual or pair

Step1
(pipeline)

Step2
(other tasks)

Report

plus.tuni.fi

Step1
(pipeline)

Step2
(other tasks)

Report
(w work share)

plus.tuni.fi

Step1
(pipeline)

Inform Kari

DD.MM.YYYYKari Systä 7

Project includes
1. Install the pipeline infrastructure using gitlab-ci. This means that you should:

• install gitlab and runners on their own machine. A fresh virtual machine is recommended.
Instructions to help in this process are below in section gitlab-ci.

• Define the pipeline using .gitlab-ci.yml for the application you implemented for the
message-queue exercise. The result of the pipeline should be a running system, so the
containers should be started automatically. (In other words: “git push => the system is up
and running)

• Test the pipeline with the current version of the application.
• PAIR: if you are a member of a pair you should return the pipe-lines before entering the next

phase. So, this first phase is still individual work (do not return equal pipelines!) even for
pairs. Returning to be done with git URL in plussa.

2. Create, setup and test an automatic testing framework
• First, you need to select the testing tools. We do not require any specific tool, even your own

test scripts can be used.
• Create test to the existing functionality of the application (see “Application and its new

features” below)

DD.MM.YYYYKari Systä 8

Content of the project
3. Implements changes to the system by using the pipeline. The development should be done in

test-driven manner (test before implementation – see https://en.wikipedia.org/wiki/Test-
driven_development)
• For each new feature, you should first implement tests, then implement the feature and after

passing the tests move to next feature. This behavior should be verifiable from in the version
history.

• Tests mush be in a separate folder “tests” at the root of your folder tree.
4. Deploy the application at least to your own machine. Optionally, deployment to external cloud

(Heroku or similar).
5. Modify the ORIG service to send messages forever until pause paused or stopped.
6. Implement an API gateway
7. Write the end report
8. (Optional) implement a static analysis step in the pipeline by using tools like jlint, pylint or

SonarQube.
9. (Optional) implement monitoring and logging for troubleshooting. This should be a separate

service that the user can use through browser. It should show at least start time of the service,
number of requests it has received after start.

https://en.wikipedia.org/wiki/Test-driven_development

DD.MM.YYYYKari Systä 9

API gateway
GET /messages

Returns all message registered with OBSE-service

PUT /state (payload “INIT”, “PAUSED”, “RUNNING”,
“SHUTDOWN”)

PAUSED = ORIG service is not sending messages
RUNNING = ORIG service sends messages
If the new state is equal to previous nothing happens.

There are two special cases:
INIT = everything is in the initial state and ORIG
starts sending again, state is set to RUNNING
SHUTDOWN = all containers are stopped

GET /state
get the value of state

GET /run-log
Get information about state changes

Example output:
2020-11-01T06:35:01.373Z: INIT
2020-11-01T06:40:01.373Z: PAUSED
2020-11-01T06:40:01.373Z: RUNNING

GET /message-log
Forward the request to HTTPSERV and return the result

GET /node-statistic (optional)
Return core statistics (the five (5) most important in your
mind) of the RabbitMQ. (For getting the information see
https://www.rabbitmq.com/monitoring.html)
Output should syntactically correct and intuitive JSON.
E.g:
{ “fd_used”: 5, …}

GET /queue-statistic (optional)
Return a JSON array per your queue. For each queue
return “message delivery rate”, “messages publishing
rate”, “messages delivered recently”, “message published
lately”. (For getting the information see
https://www.rabbitmq.com/monitoring.html)

https://www.rabbitmq.com/monitoring.html
https://www.rabbitmq.com/monitoring.html

DD.MM.YYYYKari Systä 10

End report

• Description of the CI/CD pipeline.
• Instructions for examiner to test the system. Pay attention to optional

features. This need to be in the README.md-file
• Example runs (some kind of log) of both failing test and passing. The

students need to show how the pipeline works both in case of
success and failure.

• Main learnings and worst difficulties (especially, if you think that
something should have been done differently, describe it here)

• Amount effort (hours) used
• PAIR: description of the individual roles of both students

DD.MM.YYYYKari Systä 11

Grading
As already been communicated this project affects 40% of in the evaluation of the overall course.
For that 40% we use the following table
• Compulsory parts work according to requirements 0..20 %

PAIR:
• at least one optional feature needs to be implemented to reach 25%
• pipelines are evaluated separately

Implementation of optional features 0..20 %

Overall quality (clean code, good comments, ….) 0..5%
Quality of the end report 0..5% (+ up to 5% compensation of a

good analysis of your solution and
description of a better way to implement.)

Gitlab CI
https://docs.gitlab.com/ee/ci/

Gitlab

Gitlab runnerGitlab runnerGitlab runnerGitlab runnerGitlab runner

.gitlab-ci.yml

http://...../user_sessions/callback

Types of runners

Shared Runners
• These runners are useful for jobs multiple projects which have similar

requirements. Instead of using multiple runners for many projects,
you can use a single or a small number of Runners to handle multiple
projects which will be easy to maintain and update.

Specific Runners
• These runners are useful to deploy a certain project, if jobs have

certain requirements or specific demand for the projects. Specific
runners use FIFO (First In First Out) process for organizing the data
with first-come first-served basis.

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Example from:
https://docs.gitlab.com/ee/user/project/
pages/getting_started/pages_from_scratch.html

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Base Image

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

This is run before
every script

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Used rules

Many variables available:
https://docs.gitlab.com/ee/
ci/variables/predefined_var
iables.html

Use of rule,
executed if rule is
“master”

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

This is for state ”deploy”.

Default states are
build, test, deploy

This is for state ”test”.

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Script to run

Never
mind J

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

File location

How to install .gitlab-ci.yml?

git add .gitlab-ci.yml
git commit -m "Add .gitlab-ci.yml”
git push origin master

variables:
TUNIPLUSSA_ID: 'TIE23536-

syksy2019'
GIT_STRATEGY: none

stages:
- build
- test
- deploy

builder:
stage: build
only:
- master
- release
tags:
- plussa
artifacts:

paths:
- FULLLOG.txt
expire_in: 2 week

script:
- tuni-rst-build

tester:
stage: test
only:
- master
tags:
- plussa
script:
- tuni-publish-to-testing

publisher:
stage: deploy
only:
- release
tags:
- plussa
script:
- tuni-publish-to-production

variables:
TUNIPLUSSA_ID: 'TIE23536-

syksy2019'
GIT_STRATEGY: none

stages:
- build
- test
- deploy

builder:
stage: build
only:
- master
- release
tags:
- plussa
artifacts:

paths:
- FULLLOG.txt
expire_in: 2 week

script:
- tuni-rst-build

tester:
stage: test
only:
- master
tags:
- plussa
script:
- tuni-publish-to-testing

publisher:
stage: deploy
only:
- release
tags:
- plussa
script:
- tuni-publish-to-production

Note: The rules syntax is an improved, more
powerful solution for defining when jobs
should run or not. Consider
using rules instead of only/except to get the
most out of your pipelines.

https://docs.gitlab.com/ee/ci/yaml/README.html

Installing
• https://www.youtube.com/watch?v=yfsvaXubuUg
Using
• https://www.youtube.com/watch?v=Jav4vbUrqII

• https://docs.gitlab.com/ee/ci/quick_start/

https://www.youtube.com/watch?v=Jav4vbUrqII
https://www.youtube.com/watch?v=Jav4vbUrqII
https://www.youtube.com/watch?v=Jav4vbUrqII
https://www.youtube.com/watch?v=Jav4vbUrqII

Function as a service/
serverless computing

Serverless computing
Baldini et all: Serverless Computing:

Current Trends and Open Problems, Research Advanges in Cloud Computing, Springer, 2017.

A cloud-native platform
for
• short-running, stateless computation
• event driven applications
which
• scale up and down instantly and automatically
and
• charge for actual usage and high granulatity

https://medium.com/@BoweiHan/an-introduction-to-serverless-
and-faas-functions-as-a-service-fb5cec0417b2

”… you can simply upload modular chunks of functionality into the cloud
that are executed independently.
Imagine the possibilities! Instead of scaling a monolithic REST server to
handle potential load, you can now split the server into a bunch of
functions which can be scaled automatically and independently.”

Function as a service?

API
gateway

Data storage

Function

Code

Access
control

Client

A simple example from
https://www.scalyr.com/blog/simple-detailed-
introduction-google-cloud-functions/• Package.json

{ "name": "my-first-function", "version": "0.0.1" }

• Code
exports.helloWorld = (req, res) => {

let message = req.query.message ||
req.body.message || 'Hello World!’;

res.status(200).send(message);
};

• Deploy with
gcloud functions deploy my-first-function --trigger-http \\
--runtime nodejs8 --entry-point=helloWorld

• Use as
http://<location>/my-first-function?message=BAM

https://www.scalyr.com/blog/simple-detailed-introduction-google-cloud-functions/

A simple example from
https://www.scalyr.com/blog/simple-detailed-
introduction-google-cloud-functions/• Package.json

{ "name": "my-first-function", "version": "0.0.1" }

• Code
exports.helloWorld = (req, res) => {

let message = req.query.message ||
req.body.message || 'Hello World!’;

res.status(200).send(message);
};

• Deploy with
gcloud functions deploy my-first-function --trigger-http \\
--runtime nodejs8 --entry-point=helloWorld

• Use as
http://<location>/my-first-function?message=BAM

https://www.scalyr.com/blog/simple-detailed-introduction-google-cloud-functions/

The actions with AWS Lambda
https://aws.amazon.com/getting-
started/tutorials/build-serverless-app-
codestar-cloud9

https://aws.amazon.com/getting-started/tutorials/build-serverless-app-codestar-cloud9

Claimed FaaS advantages

• Smaller for developer since infrastructure is handled by somebody
else
=> more time for writing application code

• Inherently scalable
• No need to pay for idle resources

(temptation to miss-use)
• Available and fault tolerant
• No explicit multi-tenancy
• Forces modular business logic

Claimed FaaS disadvantages

• Decreased transparency
• Maybe challenging to debug
• Autoscaling of functions may lead to autoscaling of cost
• Keeping track of huge numbers of functions is tough
• Chaching of requests?

Nice video about microservices

• Netflix story (Mastering Chaos - A Netflix Guide to Microservices)
<https://www.youtube.com/watch?v=CZ3wIuvmHeM>

https://www.youtube.com/watch?v=CZ3wIuvmHeM

