
DD.MM.YYYYKari Systä 1

Lecture 10

Automation

Kari Systä
03.11.2020

3.11.2020ssss 2

Schedule for coming weeks
Week Lecture Plussa exercises (deadlines)
10/45 03.11 Testing and testing automation

11/46 10.11 Guest Lecture, CD pipeline at cargotec

12/47 17.11 Deployment, hosting and monitoring

13/48 24.11 Introduction of some popular tools

14/40 01.12 Recap

DD.MM.YYYYKari Systä 3

Content of today

• Recap about gitlab CI
• Summary of Cloud Native
• Automation in the pipeline

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Example from:
https://docs.gitlab.com/ee/user/project/
pages/getting_started/pages_from_scratch.html

Is this correct?

Empty

Before script

Test

Before script

deploy

gem install bundler
bundle install

bundle exec jekyll build -d test

gem install bundler
bundle install

bundle exec jekyll build -d build

Why not?

This is correct visualization!

Empty

Before script

Test

Before script

deploy

If branch != master

If branch == master

DevOps practices

• Organizational
• increased scope of responsibilities for developers;
• intensified cooperation between development and operations.

• Technical
• automation,
• monitoring
• measurement

3.11.2020 ssss 7

Deployment pipeline (a possible example)

3.11.2020 8

About automation

Deployment pipeline (a possible example)

3.11.2020 10

Infrastructure as code
From: https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code

Infrastructure as Code (IaC) is
• the management of infrastructure (networks, virtual machines, load

balancers, and connection topology) in a descriptive model,
• using the same versioning as DevOps team uses for source code.
• Like the principle that the same source code generates the same

binary, an IaC model generates the same environment every time it is
applied.
• IaC is a key DevOps practice and is used in conjunction

with continuous delivery.

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery

Benefits of automation

• Prevent errors
• Is repeatable
• No need to write documentation
• Enables collaboration because everything is explicit in scripts
• Expertise encapsulated in scripts
• Manual work is boring
• Fast and relentless feedback
• Risk management: Automated checking and auditing

Automation includes

• Building
-> no command-line tools needed

• Testing
-> run frequently

• Other quality analysis
-> less manual inspection needed;

• Deployment
-> VMs and containers created automatically
-> configuration management

• Database tools
-> initialization
-> management

• Scaling

Automated tests

• A common practice in CI and CD
• Does not invent the test (usually);
• test are designed and implemented manually but
• executed automatically

• Tests need to maintained
• Software needs to be testable
• Not a silver bullet for testing, but necessary helper in CI/CD

Testability

•Testbed can command the software
•Tests can investigate state and results
•Proper architecture and coding style helps

e.g. Standard getters and setters
•Well-defined APIs

Unit/component
testing

Acceptance
testing

GUI
testing

Manual
testing?

Automated acceptance tests
• Acceptance tests do not test everything but is an essential “gate” if

deployment is automated.
• Some best practices (according to Humbley and Farley):
• Test in realistic environment(s)
• Acceptence tests are owned by the whole team (no separate team for it)
• Developers should be able to run the tests in their own dev environment)
• Tie to business value – not to technical solution of the system

• Nonfunctional testing
• Capacity, scalability
• Code quality analysis

RabbitMQ

OBSE

IMEDORIG

ç

Testing cloud-native is difficult
And debugging even more difficult

API
Gateway

HTTPSERV

RabbitMQ

OBSEWhat if OBSE is implemented
by a separate team that does
not now much about other services.

RabbitMQ

OBSE

RabbitMQ

OBSE

IMEDORIG

ç

API
Gateway

HTTPSERV

GET /messages

2020-10-
01T06:35:01.373Z
Topic my.o: MSG_1

Correct?

RabbitMQ

OBSE

IMEDORIG

ç

API
Gateway

HTTPSERV

GET /run-log

2020-11-01T06:35:01.373Z: INIT
2020-11-01T06:40:01.373Z:
PAUSED
2020-11-01T06:40:01.373Z:
RUNNING

Correct?

? Depends on
implementation

Testing microservices
(https://www.infoq.com/articles/twelve-testing-techniques-microservices-intro/)

Key takeaways
• Because a microservice architecture relies more on over-the-wire (remote)

dependencies and less on in-process components, your testing strategy
and test environments need to adapt to these changes.
• When testing monoliths using existing techniques like service virtualization,

you do not have to test everything together; instead, you can divide and
conquer, and test individual modules or coherent groups of components.
• When working with microservices, there are also several more options

available, because microservices are deployed typically in environments
that use containers like Docker.
• You will need to manage the interdependent components in order to test

microservices in a cost and time effective way. You can use test doubles in
your microservice tests that pretend to be real dependencies for the
purpose of the test.

Artefact repository

Example of data base automation
https://flywaydb.org

” Flyway is an open-source database migration tool. It strongly favors
simplicity and convention over configuration. It is based around just 6
basic commands: Migrate, Clean, Info, Validate, Baseline and Repair.
Migrations can be written in SQL (database-specific syntax (such as
PL/SQL, T-SQL, …) is supported) or Java (for advanced data
transformations or dealing with LOBs).”

Automation challenges

• ”…provisioning scripts were considered error-prone and, according to
developers, they did not work in some environments…”
• ”…automation of the network in was said to be difficult in addition to

dealing with legacy system…”
• ”Networks are pretty hard. Some of the databases are pretty hard too

because the old relational databases haven’t been designed to be
clustered…”

Automation scripts are programs
Infrastructure as code

• ”Infrastructure as code (IaC) is the process of managing and provisioning
computer data centers through machine-readable definition files, rather than
physical hardware configuration or interactive configuration tools.”
• three approaches to IaC: declarative (functional) vs. imperative (procedural)

vs. intelligent (environment aware)

tasks:
- name: ensure apache is at the

latest version
yum:
name: httpd
state: latest

- name: ensure that postgresql is started
service:
name: postgresql
state: started

apt-get install …

Infrastructure as code
All SW engineering principles should be applied.

• Testing
• Maintenance
• Documentation
• Version and configuration management

• Bugs may stop the whole engine

Huge number or tools available

• https://digital.ai/periodic-table-of-devops-tools
• https://landscape.cncf.io

https://landscape.cncf.io/
https://landscape.cncf.io/

Summary of cloud native

One proposal

What it means to be Cloud Native approach — the CNCF way
https://medium.com/developingnodes/what-it-means-to-be-cloud-native-approach-the-cncf-way-9e8ab99d4923

1. Containerization
• Docker container image is a lightweight,

standalone, executable package of software
that includes everything needed to run an
application.

2. CI/CD
3. Orchestration
• Kubernetes is the market-leading orchestration

solution.
4. Observability & Analysis
• Monitoring, logging, and tracing

5. Service MESH

6. Networking and Policy
• Flexibility with authorization, admission control and

data filtering

7. Distributed Database
• When you need more resiliency and scalability than

you can get from a single database

8. Messaging

9. Container registry and runtimes

10. Sofware distribution

Serverless
Baldini et al: Serverless Computing: Current Trends and Open Problems

Edge Master

UI

API Gateway

Could events

Queue

Dispatcher

Worker

Worker

Worker

Microservices vs. Serverless/FaaS
(They are different – do not call serveless microservices)

• Microservice
• Small services running in their own process and communicating with

lightweight services
• Can be stateful

• Serverless / FaaS
• Short term execution triggered by a request, then closes down
• For stateless computing

Some comparison

Microservice Serverless / FaaS
Bug hunting Easier (but not easy) Difficult
Infrastructure code May be complex Minimal or even non-existent
Scaling Need to be implemented Automatic
Performance Good Possible cold-start issues
Running cost May include cost of idle time Pay only per use

Microfront-ends

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

1. Web Approach

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

2. Server-side composition

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

3. Client-side composition

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

4. Client-side rendering

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

5. SPA composition

Organization and process issues

Revision control CI/CD pipeline Authentication

Database

Logic

UI

Database

Logic

UI

Database

Logic

UI

UI team

Stateful vs stateless computation
• If a service has an internal state it is difficult to
• Scale it
• Move it to other server or other hosting system
=> Stateless Services are subject to cloud-specific optimizations

• The internal state my be
• volatile or
• non-volatile
• ... in memory, file local to container,

• Serverless / FaaS

7R’s of cloud Micration

Replace
with imilar or

improved
but SaaS

Reuse
in the new SaaS

version

Refactor
towards cloud-

native
architecture

Replatform
by using cloud

services

Rehost
to a VM

RetireRetain

Reminder
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/

• Packaged as lightweight
containers
• Developed with best-of-breed

languages and frameworks
• Designed as loosely coupled

microservices
• Centered around APIs for

interaction and collaboration
• Architected with a clean

separation of stateless and
stateful services

• Isolated from server and
operating system dependencies
• Deployed on self-service,

elastic, cloud infrastructure
• Managed through agile DevOps

processes
• Automated capabilities
• Defined, policy-driven resource

allocation

