D1SH mcareoee

Digital Solutions Hub

Utilizing DevOps in Cargotec loT Cloud

Juha Uola
DevOps Lead

(4 CARGOTEC DiSH



Digital Solutions Hub’s main
goal is to provide software
products and services support
to all Cargotec business units.

DiSH also owns and develops
Cargotec loT Cloud.

[ KALMAR (% MACGREGOR [§HIAB



Cargotec Business Units

[ MACGREGOR
[ KALMAR [%§HIAB

navis BROMMA

(4 CARGOTEC DiSH




Cargotec loT Cloud

An AWS based cloud platform for ingesting,
processing, storing and retrieving data from
various sources. Making this data available for
building new customer applications.

Data figures

e Billions of rows / month
e ~200GiB / month
e ~9000 devices sending data

[ CARGOTEC DisH




Cargotec loT Cloud

Data Science Teams Manual User Input Customers
N N 02
U @R P
0l

Data Science Applications E Enrichment Applications E Customer Applications

. Application Storagei
Machine Learningm

A Application Storage

— ' Preprocess Preprocess

1111l

E TTTTT X E <
Data Collection Data Lake Preprocess Processed Data Lake

10T Devices /
Load Handling Equipment

[ CARGOTEC DisH :



Architecture example

— [

— [

loT data

i> rf" _—'IIC}II

— [

— [

— [

ﬁgT |

8
:

o

[ CARGOTEC DisH

|ICHI

|ICHI

REST APls



DevOps developer support

/ loT Cloud AWS PaaS / CIC-CloudConfiguration Pull requests

se custom resource to get userpool secrets to miab stagingtoraw

feature/DCC-419_use_secrets._. > master [EEED ° Approve  ses
@D : : pp

© Merged pull request

Merged in feature/DCC-419_use_secrets_manager_to_get_userpool_secret (pull request #1194)

2704f50 - Juha Uola - 2020-09-15

DCC-419: Use custom resource to get userpool secrets to miab stagingtoraw

® Use custom resource instead of calling describe_user_pool_client in lambda

> 0 attachments

0 comments

{3 Add a comment

> 2 commits

2 files O

@(a File tree v

@@ -838,7 +838,7 @@ compone

[ CARGOTEC DiSH

i= 2 of 2 checks passed

° Al tasks resolved

° 1+ approval

° System_Tests

Oy 2files

a8 roles

& env/common/vars



DevOps building block 1: Automated testing - unit tests

e  All components should have unit tests
e  Unit tests are ran by ClI pipeline

©

4

® i

[*4CARGOTEC DiSH



DevOps building block 1: Automated testing - system tests

Starting point: Basic system smoke test

Goal: All main features covered with system tests

Running system tests needs to be part of the Cl pipeline

Bonus: Developers are able to run system tests against their private test environment

©

4

@ @ @

[*4CARGOTEC DiSH ;



Learnings from automated testing

Automated testing helps catching bugs early
e Tests need to be reliable for automation to work
o Introducing new tests is a challenge for reliability
o  System test problems affect all developers
e Tests need to be ran in controlled environment
o Jenkins build agents only have Docker installed
o  For system tests the whole test cloud environment should be created from scratch for each test run, but this
is rarely possible in practise
o  Need to be able to at least update test cloud environment with desired changes
e  Test results for pull request should come under 15 mins
o  May need to test in parallel and reduce pull request test set
e  There are many build pipelines, those should be created as code to allow code reuse
Tools that we use
o  BitBucket for git repository
o  Jenkins for build automation
o  Whitesource for security scanning
o  Robot Framework for system tests

[ CARGOTEC DisH



DevOps building block 2: Repeatable cloud deployment

e  Automated system testing requires that cloud environments can be created, updated and removed easily
e Repeatable cloud deployment requires

All software components are versioned

Cloud infrastructure is defined as code

Configurations for different environments, such as testing, pilot and production, are defined as code
DB schema changes are defined as code

o O O O

docker-compose run ansible playbook create_infra.yml -e "project=iotcloud env=testing stackName=myStack"

[ CARGOTEC DisH :



Repeatable cloud deployment

Component releasing System releasing
Component git Component i System git
i repository binary repository Lo repository '

Component A v1.0
Component B v1.3

Component C v2.0

1
Create .| Component ! :
component binary x.y.x | :
: vy I ' | Infrastructure blueprint J
1
1

1

| Environment configurations J

i i Deploy infra

[ CARGOTEC DisH



Learnings from repeatable cloud deployment

Cloud deployment from scratch must pass system tests
Cloud deployment from scratch takes several hours, updating is faster
Manual operations are an exception in pilot and production, typically only ClI pipeline is updating them
Being able to create own test cloud is a treat for developers
o  Can be expensive, so need to downsize all possible resources and optimize availability
o  Cloud environment removal is important for developers, but it can break easily
m  Periodical Cl job to test cloud creation, system tests and cloud removal
e  Continuous delivery has been discussed
o  Component release could result a cloud deployment
o Would require further emphasis on system testing
o  No requirements for high update frequency
e  Technologies that we use
o AWS CloudFormation + Jinja2 for infra definitions
o  Ansible for managing configurations and variables

[ CARGOTEC DisH



DevOps building block 3: System monitoring

Rotating support team within the development team

Support team is alerted in Slack, if system is unhealthy

AWS CloudWatch dashboards are used to debug the discovered issues
Logs for all components can be searched from AWS CloudWatch

srolbar < CloudWatch

&
&
&
&
&
&
&
&1
&
&1
&1

&

[ CARGOTEC DisH




Learnings from system monitoring

e  System monitoring is required, if issues are to be found before customer starts complaining

e  System health alerts are sent to dedicated Slack channel, but this can get noisy and hard to follow
o  Dedicated error monitoring tools such as Rollbar can help to categorize issues

e  Technologies that we use
o AWS CloudWatch for logs and dashboards (planning to use 3rd party tool)
o Rollbar for keeping track of application errors

[ CARGOTEC DisH



loT Cloud DevOps journey

From

Manually set up servers and infrastructure
EC2-based architecture

Manually maintained development, pilot and
production clouds with different configurations
Changing and deploying components directly in
production

Manually testing the system after each change (or
not at all)

Each developer having their own components that
nobody else knows about

Each component deployed differently

No component versioning

No system versioning

No automated system testing

Errors are detected by customer

=> Development team spending most of its time figuring
out why system is not working and what broke it

[ CARGOTEC DisH

To

Infrastructure as code

Cloud-native architecture

Setups can be checked from source code

Similar development, pilot and production clouds
Managed cloud environments are updated only by
changes in source code

All code is peer-reviewed, which spreads the
knowledge

Automated system tests

Components are versioned and published is similar
fashion

System is versioned and test results for each
version are available

System monitoring alerts to Slack

Errors are detected by the development team

=> Development team spending most of its time developing
new features and creating new tests



lot Cloud DevOps next goals

Monitor also data quality, not just data ingestion operation
Shorten development cycle time

Improve system deployment time

Improve system tests coverage, reliability and performance
System performance testing

Make development process status more visible for stakeholders

[ CARGOTEC DisH



loT Cloud recent failures

e Updating a library version inside component A caused change in component A output, other system components
were unable to read the new format -> 100 days of aggregated loT data corrupted
o  Cause: Missing system test covering component A
o Solution: Revert the change, recalculate data, create system test
e Change in cloud infrastructure code caused pilot deployment to fail even though system tests in dev environment
passed
o  Cause: Pilot environment had old manual configuration that prevented the update
o  Solution: Remove manual configuration and add corresponding infrastructure code to master branch

[ CARGOTEC DisH o



Thank you! (&

For more information about DiSH,
Jobs and trainee positions

Juha Uola
juha.uola@cargotec.com

Petri Selonen
petri.selonen@cargotec.com

(4 CARGOTEC DiSH



mailto:juha.uola@cargotec.com
mailto:petri.selonen@cargotec.com

Appendix

[ CARGOTEC DisH



CARGOTEC DiSH

TERMINAL | EQUIPMENT

OVERVIEW = SHIFT Friday 18.05.2018 Day Week Month

CONTAINER MOVES

TOTAL MOVES
4844
VESSEL RAIL Im.
In Out Shuffle in Out Out
M@ 483 24 1437 1325 105

AVG. TURN TIME TOTAL VISITS QUAY CRANE OTHER CHE
2h 1703 : 37 164 /n
CONTAINER MOVES | EQUIPMENT GMPH

Fanos. sa208 sn1308 Mon 14,05 Toe 1505 Wes 1805 Trw 17.05. rnuu sa190s S 2005, Mon21.05.

21



%)

Mon 4 June 12:31

EQUIPMENT PLAYBACK CHECKLIST

28.05.2018 to 03.06.2018

TERMINAL

Last 24 hours

‘ EQUIPMENT

Last 7 days Last 30 days

ALL EQUIPMENT

nile
(I

B Moving

Equipment name

RS-002

RS-003

RS-001

RS-005

RUNNING HOURS

149 h 18 min

M Engine off
16% 7% 75% 2%
ﬁ 8% 77% 2%
[
Eﬂ& 6% 80% 2%
——
13% 6% 79% 2%

Moves per hour v

3,5 moves/h

3,1 moves/h

2,9 moves/h

0,5 moves/h

LOAD COUNTER

1 992 loads

Fuel consumption

4,5 iitresin

4 litresin

4 litresin

4 litresin

Shocks

1 shocks

0 shocks

1 shocks

31 shocks

FUEL AND ENERGY
2 775,4 liters
0 kwh

Total running hours

41 ,7 hours

38 ,2 hours

34,3 hours

35,1 hours

SHOCKS
33 shocks

Time to next service

no data

no data

no data

235 hours

22



