
1

Utilizing DevOps in Cargotec IoT Cloud

Juha Uola
DevOps Lead



2

Digital Solutions Hub’s main 
goal is to provide software 
products and services support 
to all Cargotec business units.

DiSH also owns and develops 
Cargotec IoT Cloud.



3

Cargotec Business Units



4

An AWS based cloud platform for ingesting, 
processing, storing and retrieving data from 
various sources. Making this data available for 
building new customer applications.

Data figures
● Billions of rows / month
● ~200GiB / month
● ~9000 devices sending data

Cargotec IoT Cloud



5

Cargotec IoT Cloud



6

Architecture example

IoT data REST APIs

...



7

DevOps developer support



8

DevOps building block 1: Automated testing - unit tests

● All components should have unit tests
● Unit tests are ran by CI pipeline

Run unit 
tests

Code Pull 
request

Build & 
test

Merge Tag 
version

Build & 
test

Code 
scan

Publish



9

DevOps building block 1: Automated testing - system tests

● Starting point: Basic system smoke test
● Goal: All main features covered with system tests
● Running system tests needs to be part of the CI pipeline
● Bonus: Developers are able to run system tests against their private test environment

Test in 
own env

Code Pull 
request

Deploy & 
test

Merge

Deploy & 
test

Deploy 
to pilot

Tag 
version

Prod 
release

Deploy 
to prod



10

Learnings from automated testing

● Automated testing helps catching bugs early
● Tests need to be reliable for automation to work

○ Introducing new tests is a challenge for reliability
○ System test problems affect all developers

● Tests need to be ran in controlled environment
○ Jenkins build agents only have Docker installed
○ For system tests the whole test cloud environment should be created from scratch for each test run, but this 

is rarely possible in practise
○ Need to be able to at least update test cloud environment with desired changes

● Test results for pull request should come under 15 mins
○ May need to test in parallel and reduce pull request test set

● There are many build pipelines, those should be created as code to allow code reuse
● Tools that we use

○ BitBucket for git repository
○ Jenkins for build automation
○ Whitesource for security scanning
○ Robot Framework for system tests



11

DevOps building block 2: Repeatable cloud deployment

● Automated system testing requires that cloud environments can be created, updated and removed easily
● Repeatable cloud deployment requires

○ All software components are versioned
○ Cloud infrastructure is defined as code
○ Configurations for different environments, such as testing, pilot and production, are defined as code
○ DB schema changes are defined as code

docker-compose run ansible_playbook create_infra.yml -e "project=iotcloud env=testing stackName=myStack"



12

Repeatable cloud deployment

Create 
component

Component 
binary repository

Component 
binary x.y.x

Deploy infra

Component git 
repository

Component A v1.0
Component B v1.3
Component C v2.0
...

System git 
repository

Infrastructure blueprint

Component releasing System releasing

Pull components

Environment configurations



13

Learnings from repeatable cloud deployment

● Cloud deployment from scratch must pass system tests
● Cloud deployment from scratch takes several hours, updating is faster
● Manual operations are an exception in pilot and production, typically only CI pipeline is updating them
● Being able to create own test cloud is a treat for developers

○ Can be expensive, so need to downsize all possible resources and optimize availability
○ Cloud environment removal is important for developers, but it can break easily

■ Periodical CI job to test cloud creation, system tests and cloud removal
● Continuous delivery has been discussed

○ Component release could result a cloud deployment
○ Would require further emphasis on system testing
○ No requirements for high update frequency

● Technologies that we use
○ AWS CloudFormation + Jinja2 for infra definitions
○ Ansible for managing configurations and variables



14

DevOps building block 3: System monitoring

● Rotating support team within the development team
● Support team is alerted in Slack, if system is unhealthy
● AWS CloudWatch dashboards are used to debug the discovered issues
● Logs for all components can be searched from AWS CloudWatch



15

Learnings from system monitoring

● System monitoring is required, if issues are to be found before customer starts complaining
● System health alerts are sent to dedicated Slack channel, but this can get noisy and hard to follow

○ Dedicated error monitoring tools such as Rollbar can help to categorize issues
● Technologies that we use

○ AWS CloudWatch for logs and dashboards (planning to use 3rd party tool)
○ Rollbar for keeping track of application errors



16

IoT Cloud DevOps journey

From
● Manually set up servers and infrastructure
● EC2-based architecture
● Manually maintained development, pilot and 

production clouds with different configurations
● Changing and deploying components directly in 

production
● Manually testing the system after each change (or 

not at all)
● Each developer having their own components that 

nobody else knows about
● Each component deployed differently
● No component versioning
● No system versioning
● No automated system testing
● Errors are detected by customer

=> Development team spending most of its time figuring 
out why system is not working and what broke it

To
● Infrastructure as code
● Cloud-native architecture
● Setups can be checked from source code
● Similar development, pilot and production clouds
● Managed cloud environments are updated only by 

changes in source code
● All code is peer-reviewed, which spreads the 

knowledge
● Automated system tests
● Components are versioned and published is similar 

fashion
● System is versioned and test results for each 

version are available
● System monitoring alerts to Slack
● Errors are detected by the development team

=> Development team spending most of its time developing 
new features and creating new tests



17

Iot Cloud DevOps next goals

● Monitor also data quality, not just data ingestion operation
● Shorten development cycle time
● Improve system deployment time
● Improve system tests coverage, reliability and performance
● System performance testing
● Make development process status more visible for stakeholders



18

IoT Cloud recent failures

● Updating a library version inside component A caused change in component A output, other system components 
were unable to read the new format -> 100 days of aggregated IoT data corrupted

○ Cause: Missing system test covering component A
○ Solution: Revert the change, recalculate data, create system test

● Change in cloud infrastructure code caused pilot deployment to fail even though system tests in dev environment 
passed

○ Cause: Pilot environment had old manual configuration that prevented the update
○ Solution: Remove manual configuration and add corresponding infrastructure code to master branch



19

Thank you! 😊

For more information about DiSH, 
Jobs and trainee positions

Juha Uola
juha.uola@cargotec.com

Petri Selonen
petri.selonen@cargotec.com

mailto:juha.uola@cargotec.com
mailto:petri.selonen@cargotec.com


20

Appendix



21



22


