
Lecture 13 - Tools

General matters
•Very little feedback on exam arrived
•I will now start preparation of exam for 14. - 23.12
•Another opportunity in ~February
•Sign in with Sisu
•Unless, new Covid-19 becomes worse, we use normal
exam rooms

•For those reported not being in Finland I will organize
special exam

24.11.2020 | 2

Today
•Kubernetes
•Ansible
•Cloud Foundry & Heroku

24.11.2020 | 3

24.11.2020 | 4

What is ”cloud orchestration”?
Two results of googling
•Orchestration is the automated configuration,
coordination, and management of computer systems
and software

•Cloud orchestration is the use of programming
technology to manage the interconnections and
interactions among workloads on public and
private cloud infrastructure. It connects automated tasks
into a cohesive workflow to accomplish a goal, with
permissions oversight and policy enforcement.

Recall Lecture 5

https://en.wikipedia.org/wiki/Configuration_management
https://en.wikipedia.org/wiki/Software_deployment
https://searchcloudcomputing.techtarget.com/definition/cloud-computing
https://searchcio.techtarget.com/definition/workflow

Docker swarm - docker compose

Docker swarm

Orchestration
Docket compose

Recall Lecture 5

Kubernetes (k8s)
• An advanced tool for orchestration of containers
(or other similar things)

• Comes with several features supporting automation and monitoring
• Has as steep learning curve
• Open source released by Google in 2004
(apache license)

• Now maintained by Cloud Native Computing Foundation
(https://www.cncf.io)

• "platform for automating deployment, scaling, and operations of
application containers across clusters of hosts”

• Is “job interview stuff”

24.11.2020 | 7

Modules of kubernetes.io tutorial
(source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

24.11.2020 | 8

Kubernetes Kluster

24.11.2020 | 9

Master

Node

Node

Node Node

Kubernetes Kluster

24.11.2020 | 10

Master

Node

Node

Node Node

Control plane

API

kubectl

etcd

Scheduler Controller
Manager

Worker node

(Docker)

Kubernetes Kluster

24.11.2020 | 11

Master

Node

Node

Node Node

Control plane

API etcd

Scheduler Controller
Manager

Kubelet Kubeproxy

Pod
containercontainercontainer

Pod
containercontainercontainer

Worker node

(Docker)

Worker node

24.11.2020 | 12

Master

Node

Node

Control plane

API etcd

Scheduler Controller
Manager

Kubelet Kubeproxy

Pod
containercontainercontainer

Pod
containercontainercontainer

Agent to control the node. Starts
(and stops) the containers.

Nework proxy

Smallest unit. Can have several
containers that share resources
with each other.
Every Pod has a unique IP
address within the kluster

Worker node

(Docker)

Control plane

24.11.2020 | 13

Master

Node

Node

Control plane

API etcd

Scheduler Controller
Manager

Kubelet Kubeproxy

Pod
containercontainercontainer

Pod
containercontainercontainer

Sees that every Pod has a Node
to run it.
Finds the most suitable node

“ a control loop that watches the
shared state of the cluster through
the apiserver and makes changes
attempting to move the current state
towards the desired state”

Key-value store for all kind of
configuration information

“… query and manipulate the state of objects …
Most operations can be performed through
the kubectl command-line interface or other command-
line tools, such as kubeadm, which in turn use the API.
However, you can also access the API directly using
REST calls.”

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/

Worker node

(Docker)

Kubernetes Kluster

24.11.2020 | 14

Master

Node

Node

Node Node

Control plane

API etcd

Scheduler Controller
Manager

Kubelet Kubeproxy

Pod
containercontainercontainer

Pod
containercontainercontainer

Then next step
(source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

24.11.2020 | 15

Deployment to Kubernetes
• Step 1: create Deployment (configuration)
• “A Deployment is responsible for creating and updating instances of

your application”

$ kubectl apply –f
https://k8s.io/examples/controllers/nginx-deployment.yaml

$ kubectl get deployments

$ kubectl get deployments

24.11.2020 | 16

Then next step
(source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

24.11.2020 | 17

Examples of tools for trouble shooting

•kubectl get - list resources

•kubectl describe - show detailed information about a resource

•kubectl logs - print the logs from a container in a pod

•kubectl exec - execute a command on a container in a pod

24.11.2020 | 18

Then next step
(source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

24.11.2020 | 19

Kubernetes services

•Service
• External IP and port
• Load balancer
• External name

24.11.2020 | 20

Then next step
(source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

24.11.2020 | 21

Scaling in Kubernets
•Scaling out a of Deployment increases the number of Pods
to the new desired state.

•Kubernetes also supports auto scaling.
• Scaling to zero is also possible, and it will terminate all Pods
of the specified Deployment.

•Services have an integrated load-balancer that will distribute
network traffic to all Pods of an exposed Deployment.

•Services will monitor continuously the running Pods using
endpoints, to ensure the traffic is sent only to available Pods.

24.11.2020 | 22

Then next step
(source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

24.11.2020 | 23

Updating an application
•Kubernetes uses rolling updates
•Zero down-time is the target

24.11.2020 | 24

According to the marketing material supported
features of Kubernetes include

• Automatic binpacking. Kubernetes automatically schedules the containers based on resource usage and
constraints, without sacrificing the availability.

• Self-healing. Kubernetes automatically replaces and reschedules the containers from failed nodes. It also kills
and restarts the containers which do not respond to health checks, based on existing rules/policy.

• Horizontal scaling. Kubernetes can automatically scale applications based on resource usage like CPU and
memory. In some cases, it also supports dynamic scaling based on customer metrics.

• Service discovery and Load balancing. Kubernetes groups sets of containers and refers to them via a Domain
Name System (DNS). This DNS is also called a Kubernetes service. Kubernetes can discover these services
automatically, and load-balance requests between containers of a given service.

• Automated rollouts and rollbacks. Kubernetes can roll out and roll back new versions/configurations of an
application, without introducing any downtime.

• Secrets and configuration management. Kubernetes can manage secrets and configuration details for an
application without re-building the respective images. With secrets, we can share confidential information to
our application without exposing it to the stack configuration, like on GitHub.

• Storage orchestration. With Kubernetes and its plugins, we can automatically mount local, external, and
storage solutions to the containers in a seamless manner, based on software-defined storage (SDS).

• Batch execution. Besides long running jobs, Kubernetes also supports batch execution.

24.11.2020 | 25

On how to configure
containers or virtual machines

24.11.2020 | 26

Alternative approaches

• Set-up everything when container is created
•Very static

• Make the container to auto-update
• You need to know in advance what might change

• Put stuff to shared folder (use volume)
• Use configuration tools

• Work also for full virtual machines and computers

24.11.2020 | 27

Ansible
(https://www.ansible.com)

Automation engine for
• Provisioning
• Configuration Management
• App Deployment
• Continuous Delivery
• Security Automation
• Orchestration

uses YAML, in the form of Ansible Playbooks

Ansible

• Ansible works by connecting to your nodes and pushing out small
programs, called "Ansible modules" to them. These programs are
written to be resource models of the desired state of the system.
Ansible then executes these modules (over SSH by default), and
removes them when finished.

• Your library of modules can reside on any machine, and there are no
servers, daemons, or databases required. Typically you'll work with
your favorite terminal program, a text editor, and probably a version
control system to keep track of changes to your content.

• A short video:
• https://www.ansible.com/resources/videos/quick-start-video

Architecture

Control
node

Ansible

Managed
node Python

Managed
node Python

Managed
node Pythonssh

Example ansible playbook

- hosts: webservers
vars:

http_port: 80
max_clients: 200

remote_user: root
tasks:
- name: ensure apache is at the

latest version
yum:
name: httpd
state: latest

- name: write the apache config
file.

template:
src: /srv/httpd.j2
dest:/etc/httpd.conf

notify:
- restart apache

- name: ensure apache is
running

service:
name: httpd
state: started

handlers:
- name: restart apache
service:
name: httpd
state: restarted

There can be
multiple plays

DevOps tools tend to fall into two categories:

• Orchestration: Deals with provisioning servers and other infrastructure
including databases across clusters while handing over responsibility
for managing the software running on the instances to configuration
management tools.

• Configuration management: Focus on managing the software on
infrastructure nodes, including installation and upgrades on servers
already in existence

Other alternatives
• Chef: Chef is written in the Ruby programming language and its CLI uses a

Ruby-based DSL. Chef assumes an agent in the controlled nodes.
• SaltStack: Written in Python, SaltStack(Salt) holds your inventory’s state on a

master server, with YAML being the default format for storing configurations.
SaltStack templates use the Jinja templating language, which will be familiar
to Python users.
• Puppet: Another tool on the configuration management side, Puppet

requires a master server, called the Puppet master, which stores the
configuration of your infrastructure and pushes changes out to clients.
• Terraform: A different approach to both Ansible and Chef. Terraform focuses

on setting up your entire infrastructure and provisioning servers. As such, it
falls on the orchestration side of the spectrum, but it can be used alongside
configuration focused tools like Chef and Ansible

Terraform

• Declarative approach, too.
• User writes a specification of the target state

• Pluggable architecture
• Can have providers for AWS, Azure, gCloud

• Code – (plan –)apply

terraform {
required_providers {

aws = {
source = "hashicorp/aws”
version = "~> 2.70”

}
}

}
provider "aws" {

profile = "default”
region = "us-west-2”

}

resource "aws_instance" "example" {
ami = "ami-830c94e3”
instance_type = "t2.micro”

}

$ terraform show
aws_instance.example:
resource "aws_instance" "example" {

ami = "ami-830c94e3"
arn = "arn:aws:ec2:us-east-1:130490850807:instance/i-

0bbf06244e44211d1"
associate_public_ip_address = true
availability_zone = "us-west-2"
cpu_core_count = 1
cpu_threads_per_core = 1
disable_api_termination = false
ebs_optimized = false
get_password_data = false
id = "i-0bbf06244e44211d1"
instance_state = "running"
instance_type = "t2.micro"
ipv6_address_count = 0
ipv6_addresses = []
monitoring = false
primary_network_interface_id = "eni-0f1ce5bdae258b015"
private_dns = "ip-172-31-61-141.ec2.internal"
private_ip = "172.31.61.141"
public_dns = "ec2-54-166-19-naws.com"
public_ip = "54.166.19.244"
security_groups = [

"default",
]
source_dest_check = true
subnet_id = "subnet-1facdf35"
tenancy = "default"
volume_tags = {}
vpc_security_group_ids = [

"sg-5255f429",
]

example.tf

WikiPedia

Finally

• Basic versions are often free/open source
• Commercial enterprise versions have nice graphical Web dashboard

Automation scripts are programs
Infrastructure as code

• ”Infrastructure as code (IaC) is the process of managing and provisioning
computer data centers through machine-readable definition files, rather than
physical hardware configuration or interactive configuration tools.”

• three approaches to IaC: declarative (functional) vs. imperative (procedural)
vs. intelligent (environment aware)

tasks:
- name: ensure apache is at the

latest version
yum:
name: httpd
state: latest

- name: ensure that postgresql is started
service:
name: postgresql
state: started

apt-get install …

From:
https://tutorials.cloudfoundry.org/cf-and-k8s/docs/comparing/

Design Approach
• Cloud Foundry is an opinionated set of components that are designed and distributed to

work together.
• Kubernetes is a flexible and extensible system with a wide range of open source components

from which you can choose, install, configure and maintain.

Built-in Functionality
• Cloud Foundry embodies an opinionated workflow, and automates the building of container

images from application code, configuration of HTTPS access to your apps, and comes pre-
configured with multi-tenancy access controls that are suitable for use in banks and
governments.

• Kubernetes offers a considerable amount of flexibility, and can be configured and extended
to support virtually any workflow. As such, you could assemble your own set of components
on Kubernetes that replicate the functionality of Cloud Foundry.

24.11.2020 | 41

Another: Heroku
https://devcenter.heroku.com/articles/how-heroku-works

• “Heroku lets you deploy, run and manage applications written in
Ruby, Node.js, Java, Python, Clojure, Scala, Go and PHP.”

• “Heroku is a polyglot platform – it lets you build, run and scale
applications in a similar manner across all the languages – utilizing
the dependencies and Procfile. The Procfile exposes an architectural
aspect of your application…”

• Architectural principles:
• Strict separation of code and configuration, explicit dependency declaration,

tight development iterations and parity between environments.
• Applications are run as independent, lightweight, and stateless processes with

quick startup and shutdown.
• Execute auxiliary tasks in one-off processes and view application output via

collated log-stream.
24.11.2020 | 42

Automation challenges

• ”…provisioning scripts were considered error-prone and, according to
developers, they did not work in some environments…”

• ”…automation of the network in was said to be difficult in addition to
dealing with legacy system…”

• ”Networks are pretty hard. Some of the databases are pretty hard too
because the old relational databases haven’t been designed to be
clustered…”

Reminders about infrastructure as code
All SW engineering principles should be applied.

• Testing
• Maintenance
• Documentation
• Version and configuration management

• Bugs may stop the whole engine

Example of an alternative approach:
CloudFoundry

• Claim: “Cloud Foundry makes going from code to running apps as easy as a single cf
push command. Don’t spend your time writing infrastructure config for Kubernetes and
Istio. Stay focused on your code.”

• “First, equating the Cloud Foundry experience to a Kubernetes experience is like
equating apples and walnuts. They’re not at all related. Kubernetes is all about
being an infrastructure abstraction, but that’s not optimized for developers, and it
has a more broadly applicable set of use cases – you can take a legacy app, slap it
into a container and run it on Kubernetes; you could craft your own containers that
are for a more modern architecture and run that on Kubernetes; and a whole
bunch of things in between. The Cloud Foundry experience is focused on
optimizing for the developer that’s writing custom software for business or, in
many cases, government applications. It’s all about custom code.”

• CloudFoundry may run on top of Kubernetes

Next week
•Recap and exam material

24.11.2020 | 46

