
Lecture 14 - recap

Kari Systä, 01.12.2020

About the exam

• In SISU I have 24 confirmed registrations
• Then, I see 52 “planned” registrations. These are assumed not to

participate.
• Please check your status

• I hope you know how – I don’t. Should be in your “calendar”-view

• Also a security notes:
• “a student who according to his or her own estimate is (or who shares accommodation with someone who is) at high

risk for severe illness from COVID-19 will not be required to attend classes or other activities (e.g. exam) on campus,
but we arrange an alternative mode of completion.”

• The “COVID-19 committee” will have a meeting today – so changes in the plans are possible

About project

• Some of you have experienced various problems in running docker-
compose in gitlab-runner. This problem did not surface last year.
• Unfortunately, the course staff have not had time to dive in to this

problem, but we hope
• You visit Kooritorio so that aspects of the problem are well understood.
• Find time to investigate the problem next week.

• There are also other approaches, like
• A separate daemon in host that runs the docker-compose
• A separate VM to do it
• …

A job

• Atlas Electric is looking for a master thesis worker.
• Topic: selection and integration of a map component:

teemu.nieminen@fi.atlas-elektronik.com

mailto:teemu.nieminen@fi.atlas-elektronik.com

The lifecycle

20.03.2017 TIE-21100/21106; K.Systä 6

What is DevOps
(there are several definitions)

• Lucy Lwakatare:
• DevOps is a concept that embodies a cultural and mindset change that is

substantiated with a set of practices to encourage cross-disciplinary
collaboration between software development and IT operations within a
software company. The main purpose for the collaboration is to enable the
fast release of quality software changes while simultaneously operating
resilient systems.

• From a socio-technical perspective, DevOps practices are focused on the
automation practices of software deployment and infrastructure
management, specifically automation of configuration management and
monitoring.

1.12.2020 ssss 7

DevOps practices

• Organizational
• increased scope of responsibilities for developers;
• intensified cooperation between development and operations.

• Technical
• automation,
• monitoring
• measurement

1.12.2020 ssss 8

Where was the beef?

Business Development Operation Use

Business Development Operation Use

DevOps

1.12.2020 ssss 10

DevOps - benefits and challenges

• improvement in speed (release cycle time)
• continuous deployment of system changes
• productivity of operations work
• improved morale, knowledge and skills

• resource constraints;
• insufficiencies in infrastructure management;
• high demands for required skills and knowledge, and
• difficulties in monitoring microservices

1.12.2020 ssss 11

Levels of virtualization

• Hardware virtualization
• Operating system virtualization
• Desktop virtualization
• Application virtualization
• Network virtualization

1.12.2020 ssss 13

Use case 1: run ”foreign” software

1.12.2020 ssss 14

Machine instructions

Operating system

Run-time / libraries

Application

Machine instructions

Operating system

Run-time / libraries

Application VM tech

Machine instructions

Operating system

Run-time / libraries

Application

Machine instructions

Operating system

Run-time / libraries

Application

Use case 2: isolate

1.12.2020 ssss 15

Machine instructions

Operating system

Run-time / libraries

Application

Machine instructions

Operating system

Run-time / libraries

Application

Machine instructions

Operating system

Run-time / libraries

Application

VM technology

Use case 3: scale

1.12.2020 ssss 16

Machine instructions

Operating system

Run-time / libraries

Application

Machine instructions

Operating system

Run-time / libraries

Application

Machine instructions

Operating system

Run-time / libraries

Application

VM technology

Customer 1 Customer 2

Cloud computing - definition

• In 1997, Professor Ramnath Chellapa of Emory University defined Cloud Computing as the new

’computing paradigm, where the boundaries of computing will be
determined by economic rationale, rather than technical limits alone.’
• NIST: Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
•

Essential characteristics 1/2
• On-demand self-service. A consumer can unilaterally provision computing capabilities,

such as server time and network storage, as needed automatically without requiring
human interaction with each service provider.
• Unilaterally?
• Without human interaction?

• Broad network access. Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, tablets, laptops, and workstations).
• What does the heterogeneous platforms mean in practice?

• Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To the
consumer, the capabilities available for provisioning often appear to be unlimited and
can be appropriated in any quantity at any time.
• What of scaling is not automatic?

Essential characteristics 2/2
• Resource pooling. The provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense of
location independence in that the customer generally has no control or knowledge over
the exact location of the provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter). Examples of resources
include storage, processing, memory, and network bandwidth.
• Why is this essential?

• Measured service. Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage
can be monitored, controlled, and reported, providing transparency for both the provider
and consumer of the utilized service.

• Why?

Service models

IaaS

PaaS

SaaS

Examples?

Product
organization

Project
organization

Customer

Hosting can be a separate business

Hosting

Amazon AWS
Microsoft Azure
IBM Cloud
Google Alphabet
OVH
…
Tieto
Cybercom

Typical set-up

1.12.2020 ssss 23

Host

Repository

Image

Image

Image

Download

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Typical set-up

1.12.2020 ssss 24

Host

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Volume Volume

Volumes are for
- Persistent data
- Data sharing

Docker swarm - docker compose

Docker swarm

Orchestration
Docket composes

N
g
i
n
x

OrionOrionOrion

OrionOrionQuantum
Leap

MongoDB

CrateDB

Grafana

Wirecloud

FIWARE Core
Component

Database

Dashboard
Component

Access control,
proxy server

CKAN

Data Management
Component

PostgreSQL

FIWARE platform architecture

FIWARE access control components
(Keyrock, Wilma and AuthZForce)
are not included in this document.

Feedback in traditional development
(Case: Internet-based service; based on slide by Antti Tirilä)

05.03.2018 28

Business Develop QA
(test)

Installation Use

Continuous delivery and deployment
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-
continuous-deployment)

05.03.2018 29

A/B Testing

05.03.2018 30

Should our
project have
A or B?

Implement a
way to collect

statistics

Implement A

Implement B

Deploy A

Deploy B

Usage
statistics

Usage
statistics

Compare

Deployment pipeline (a possible example)

1.12.2020 31

What does it really take to run CD?

14.3.2016 TIE-2210x/Kari Systä 32

Integration Test

”Build”

”Build”

”Build”

Test

Test

Test

Use

Set-up and
operate

Test
automation

VM

VM VM

VM

Set-up and
operate

Estimate &
manage costs

Artifact repository

1.12.2020 33

What does it really take to run CD?

14.3.2016 TIE-2210x/Kari Systä 34

Integration Test

”Build”

”Build”

”Build”

Test

Test

Test

Use

Set-up and
operate

Test
automation

VM

VM VM

VM

Set-up and
operate

Estimate &
manage costs

CI – essential practices
(according to Humbley and Farley)

• Don’t check in on a broken code
• Always run all commits tests locally before committing, or get your CI server

to do it for you
• Wait for commit tests to pass before moving on
• Never go home on a broken build
• Always be prepared to revert to the previous revisions
• Time-box fixing before reverting
• Don’t comment out failing tests
• Take responsible for all breakages that result from your changes
• Test-driven development

1.12.2020 35

Deployment essential pract.
(according to Humbley and Farley)

• Only build your binaries once
• Deploy the same way to every environment
• Smoke-test your deployments
• Deploy to copy of production
• Each change should propagate through the pipeline instantly
• If any part of pipeline fails, stop the line

1.12.2020 36

A possible strategy to deploy a new version?

App

App
v2

App

Deployment strategies

• Basic Deployment (aka Suicide) (https://harness.io/2018/02/deployment-
strategies-continuous-delivery/) all nodes are updated at the same time

• Rolling Deployment (https://harness.io/2018/02/deployment-strategies-
continuous-delivery/) nodes are updated incrementally,

• BlueGreenDeployment
(http://martinfowler.com/bliki/BlueGreenDeployment.html) uses a router of
incoming traffic as the tool. In this approach the new version (called green) is set
up in parallel with the current (blue). When new (green) is ready, the router is
switched to new (green) and blue is left as a backup. If something goes wrong
with new, the router can be switched back to old - that means easy “rollback”.

• Canary Releases (http://martinfowler.com/bliki/CanaryRelease.html) implements
the deployment incrementally. In this case the router first directs only part of the
customers to the new version. If feedback is is good, the other customers are
moved to new version, too

https://harness.io/2018/02/deployment-strategies-continuous-delivery/
https://harness.io/2018/02/deployment-strategies-continuous-delivery/
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/CanaryRelease.html

https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html

The old way

Static approach
• Libraries come with the compiler, or

are intalled to the development tool
• Compiler integrates application with

libraries
• The integrated system is deployed

to users

The Web & Cloud way

Dynamic approach
• Libraries are downloaded in a

dynamic manner
• Huge number of libraries available,

use each other, and are frequently
updates (continuous delivery)

• npm
• pip

Package.json
{

"name": "service1",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC",
"dependencies": {

"express": "4.17.1",
"request": "2.88.0"

}
}

Dockerfile

#This is a sample Image
FROM ubuntu
MAINTAINER demousr@gmail.com
RUN apt-get update
RUN apt-get install –y nginx
CMD [“echo”,”Image created”]

1.12.2020 ssss 44

mailto:demousr@gmail.com

More about cloud-native
architectures

1.12.2020 ssss 45

Com
m

unination

REST MQ

(g)RPC graphQL

API Gateway

Structute and
deploym

ent

Micro-
services FaaS

Consequences

Independent
development

Independent
deployment

Minimum centralized
management

REST

gRPC

Message queue

Standard ways to document
Designed for intependent

Designed for
intependent

Can be used in many ways

Practically none on top of
Network infra

No standards: need to be
agreed on

The message queue need to
be maintained

The queue even suppors
interrupts

Practically none on
top of

Network infra

How about external calls?

Client
API

gateway

Client2

RECALL Interface segregation principle

“many client-specific interfaces are better than one general-purpose interface.”
“Make fine grained interfaces that are client specific”
“Clients should not be forced to depend upon methods they do not use”
• Big system with many dependencies = small change causes changed everywhere
• Large interfaces are split to smaller and role-base interfaces.

Þchanges do not affect everybody
ÞNew features are easier to add
ÞInterfaces are easier to learn

1.12.2020 48

David S. Linthicum, Cloud-Native Applications and Cloud
Migration: The Good, the Bad, and the Points Between,
IEEE Cloud Computing, December 2017

• Performance. You’ll typically be able to access provide better performance than is
possible with nonnative features. For example, you can deal with an input/output
(I/O) system that works with autoscaling and loadbalancing features.

• Efficiency. Cloud-native applications’ use of cloud-native features and application
programming interfaces (APIs) should provide more efficient use of underlying
resources. That translates to better performance and/or lower operating costs.

• Cost. Applications that are more efficient typically cost less to run. Cloud
providers send you a monthly bill based upon the amount of resources
consumed, so if you can do more with less, you save on dollars spent.

• Scalability. Because you write the applications to the native cloud interfaces, you
have direct access to the autoscaling and load-balancing features of the cloud
platform.

https://martinfowler.com/articles/microservices.html

the microservice architectural style is an
approach to developing a single
application as a suite of small services,
each running in its own process and
communicating with lightweight
mechanisms, often an HTTP resource API.
These services are built around
business capabilities and
independently deployable by fully
automated deployment machinery.
There is a
bare minimum of centralized management
of these services, which may be written in
different programming languages and use
different data storage technologies.

I. Nadareishvili et al., Microservice
Architecture: Aligning Principles,
Practices, and Culture, O’Reilly, 2016.
• small
• messaging enabled,
• bounded by contexts,
• autonomously developed,
• independently deployable,
• decentralized, and
• built and released with automated

processes.

1.12.2020
50

https://martinfowler.com/articles/microservices.html

Some links• 10 Key Attributes of Cloud-native Applications, <https://thenewstack.io/10-
key-attributes-of-cloud-native-applications/>
• What are cloud-native applications?

<https://opensource.com/article/18/7/what-are-cloud-native-apps>
• Native cloud application (NCA),

<https://searchitoperations.techtarget.com/definition/native-cloud-
application-NCA>
• Understanding cloud-native applications,

<https://www.redhat.com/en/topics/cloud-native-apps>
• David S. Linthicum, Cloud-Native Applications and Cloud Migration: The

Good, the Bad, and the Points Between, IEEE Cloud Computing, December
2017.

1. Packaged as lightweight containers
2. Developed with best-of-breed languages and frameworks
3. Designed as loosely coupled microservices
4. Centered around APIs for interaction and collaboration
5. Architected with a clean separation of stateless and stateful

services
6. Isolated from server and operating system dependencies
7. Deployed on self-service, elastic, cloud infrastructure
8. Managed through agile DevOps processes
9. Automated capabilities
10.Defined, policy-driven resource allocation

https://thenewstack.io/10-key-attributes-of-cloud-native-applications/
https://opensource.com/article/18/7/what-are-cloud-native-apps
https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA
https://www.redhat.com/en/topics/cloud-native-apps

Serverless computing
Baldini et all: Serverless Computing:

Current Trends and Open Problems, Research Advances in Cloud Computing, Springer, 2017.

A cloud-native platform
for
• short-running, stateless computation
• event driven applications
which
• scale up and down instantly and automatically
and
• charge for actual usage and high granulatity

Stateful vs stateless computation
• If a service has an internal state it is difficult to

• Scale it
• Move it to other server or other hosting system
=> Stateless Services are subject to cloud-specific optimizations

• The internal state my be
• volatile or
• non-volatile
• ... in memory, file local to container,

• Serverless / FaaS

7R’s of cloud Micration

Replace
with imilar or

improved
but SaaS

Reuse
in the new SaaS

version

Refactor
towards cloud-

native
architecture

Replatform
by using cloud

services

Rehost
to a VM

RetireRetain

Infrastructure as code
From: https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code

Infrastructure as Code (IaC) is
• the management of infrastructure (networks, virtual machines, load

balancers, and connection topology) in a descriptive model,
• using the same versioning as DevOps team uses for source code.
• Like the principle that the same source code generates the same

binary, an IaC model generates the same environment every time it is
applied.
• IaC is a key DevOps practice and is used in conjunction

with continuous delivery.

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery

Worker node

(Docker)

Kubernetes Kluster

1.12.2020 | 57

Master

Node

Node

Node Node

Control plane

API etcd

Scheduler Controller
Manager

Kubelet Kubeproxy

Pod
containercontainercontainer

Pod
containercontainercontainer

Alternative approaches to define
deployment

• Set-up everything when the image is created
• Very static

• Make the container to auto-update
• You need to know in advance what might change

• Put stuff to shared folder (use volume)
• Use configuration tools

• Work also for full virtual machines and computers

1.12.2020 | 58

How prepare to exam
• Lecture videos & slides
• Read

• - Peter Mell; Timothy Grance (September 2011). The NIST Definition of Cloud Computing
(Technical report). National Institute of Standards and Technology: U.S. Department of
Commerce. doi:10.6028/NIST.SP.800-145. Special publication 800-145.
<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf>

• - 10 Key Attributes of Cloud-native Applications, <https://thenewstack.io/10-key-attributes-
of-cloud-native-applications/>

• - What are cloud-native applications? <https://opensource.com/article/18/7/what-are-cloud-
native-apps>

• - M. Leppänen et al., "The highways and country roads to continuous deployment," in IEEE
Software, vol. 32, no. 2, pp. 64-72, Mar.-Apr. 2015. doi: 10.1109/MS.2015.50, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7057604&isnumber=7057030

• - Continuous Delivery web page: https://continuousdelivery.com
• - Lwakatare , Kilamo , Karvonen, Sauvola , Heikkilä, Itkonen, Kuvaja, Mikkonen, Oivo &

Lassenius: DevOps in practice : A multiple case study of five companies, Information and
Software Technology , vol. 114 , pp. 217-230 . https://doi.org/10.1016/j.infsof.2019.06.010

• https://www.wired.com/insights/2011/12/service-level-agreements-in-the-cloud-who-cares

https://doi.org/10.1016/j.infsof.2019.06.010

