
COMP.SE.140
Lecture 4

Course matters
•Returning of Docker exercise seems to be in good speed
•I will conduct assessment at when deadline has passed
•Second exercise should open tomorrow 22.09
•GitLab repos will be created today or tomorrow or …

• You can also use some other repos…

21.9.2021 | 2

Recap
•Hypervisor-based VM

• Completely new ”machine” on top of another
•Container

• Lightweight VM sharing the OS kernel with the host

21.9.2021 | 3

Vagrant

21.9.2021ssss 4

Vagrant intro
•A way to create and distribute development
environments as virtual machine (full VMs – not
containers)

• If time lets look:
https://www.vagrantup.com/intro/index.html

21.9.2021 ssss 5

https://www.vagrantup.com/intro/index.html

Vagrant vs Docker
(https://www.vagrantup.com/intro/vs/docker.html)

• Vagrant is a tool focused on providing a consistent development environment workflow
across multiple operating systems. Docker is a container management that can
consistently run software as long as a containerization system exists.

• Containers are generally more lightweight than virtual machines, so starting and stopping
containers is extremely fast. Docker uses the native containerization functionality on
macOS, Linux, and Windows.

• Currently, Docker lacks support for certain operating systems (such as BSD). If your target
deployment is one of these operating systems, Docker will not provide the same
production parity as a tool like Vagrant. Vagrant will allow you to run a Windows
development environment on Mac or Linux, as well.

• For microservice heavy environments, Docker can be attractive because you can easily
start a single Docker VM and start many containers above that very quickly. This is a good
use case for Docker. Vagrant can do this as well with the Docker provider. A primary
benefit for Vagrant is a consistent workflow but there are many cases where a pure-
Docker workflow does make sense.

• Both Vagrant and Docker have a vast library of community-contributed "images" or
"boxes" to choose from.

21.9.2021 ssss 6

What are typical cloud applications
•Networks of containers!

21.9.2021 | 7

A
B

D
C

Logically like:
A() {

B();
C();
D();

}

But implemented as
inter-process communication.
A() {

http.get(B:80);
http.get(C:80);
http.get(D:80);

}

Docker Swarm

• Clustering for scalability
• A swarm is a group of host running

docker in swarm mode
• A host can be either a manager or
worker

• Workers run services
• Manager assigns tasks to worker nodes
• Load balancing

21.9.2021 ssss 8

Docker swarm

docker swarm init

docker swarm join

docker swarm join

From docs.docker.com

21.9.2021 ssss 9

N
g
i
n
x

OrionOrionOrion

OrionOrionQuantum
Leap

MongoDB

CrateDB

Grafana

Wirecloud

FIWARE Core
Component

Database

Dashboard
Component

Access control,
proxy server

CKAN

Data Management
Component

PostgreSQL

FIWARE platform architecture

FIWARE access control components
(Keyrock, Wilma and AuthZForce)
are not included in this document.

21.9.2021 ssss 11

https://github.com/cityiot/CityIoT-platform/blob/master/start_fiware.sh

21.9.2021 ssss 12

docker service ls

ID NAME MODE REPLICAS IMAGE
6eenqanud5k3 orion_orion replicated 5/5 fiware/orion:2.3.0
vncsavctf9ib mongo-rs_controller replicated 1/1 smartsdk/mongo-rs-con…
lx6muj0xkwrl mongo-rs_mongodb global 1/1 mongo:3.6.16
o3q85b6rfpli ql_quantumleap replicated 3/3 smartsdk/quantumleap:0.
z669mqi1ir0f ql_cratedb global 1/1 crate:3.3.5
n8dlhqmczecd nginx_nginx global 1/1 nginx:1.15.8

Docker swarm - docker compose

Docker swarm

Orchestration
Docket compose

Orchestration vs Choreography

21.9.2021 ssss 14

What is ”cloud orchestration”?

Two results of googling
• Orchestration is the automated configuration, coordination, and

management of computer systems and software
• Cloud orchestration is the use of programming technology to manage

the interconnections and interactions among workloads on public and
private cloud infrastructure. It connects automated tasks into a
cohesive workflow to accomplish a goal, with permissions oversight
and policy enforcement.

https://en.wikipedia.org/wiki/Configuration_management
https://en.wikipedia.org/wiki/Software_deployment
https://searchcloudcomputing.techtarget.com/definition/cloud-computing
https://searchcio.techtarget.com/definition/workflow

Docker compose
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

$ docker-compose up –d
$./run_tests
$ docker-compose down

Docker compose
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

RedisWeb

Docker compose
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

RedisWeb

50
00

:5
00

0

Docker compose
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

RedisWeb

/code

/var/log

.

Logvolume01

Docker compose
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

$ docker-compose up –d
$./run_tests
$ docker-compose down

Many options: e.g., automatic
restarting

YAML

• Wikipedia: YAML ("YAML Ain't Markup Language") is a human-
readable data-serialization language. It is commonly used
for configuration files

• Spaces for indentation – have a syntactical meaning
• https://www.tutorialspoint.com/yaml/yaml_basics.htm

https://en.wikipedia.org/wiki/Human-readable
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Configuration_file
https://www.tutorialspoint.com/yaml/yaml_basics.htm

YAML -> JSON
version: '3’
services:

web:
build: .
ports:

- "5000:5000”
volumes:

- .:/code
- logvolume01:/var/log

links:
- redis

redis:
image: redis

volumes:
logvolume01: {}

{
"version": "3",
"services": {
"web": {
"build": ".",
"ports": [
"5000:5000"

],
"volumes": [
".:/code",
"logvolume01:/var/log"

],
"links": [
"redis"

]
},
"redis": {
"image": "redis"

}
},
"volumes": {
"logvolume01": {}

}
}

Nice looking tutorial

• https://www.baeldung.com/docker-compose

Networking aspects

version: '3'
services:

pinger:
image: "pinger"
ports:

- "8893:8893"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_2
pingrelay:

build: "pingrelay"
ports:

- "8004:8894"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_1
networks:

pingnet:

volumes:
data: {}

[
{

"Name": "composetest_pingnet",
"Id": "42d79573d3b3cf…",
"Created": "2019-02-14T20:08:36.226402086+02:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",
"Options": null,
"Config": [

{
"Subnet": "172.20.0.0/16",
"Gateway": "172.20.0.1"

}
]

},
"Internal": false,
"Attachable": true,
"Ingress": false,
"ConfigFrom": {

"Network": ""
},
"ConfigOnly": false,
"Containers": {},
"Options": {},
"Labels": {

"com.docker.compose.network": "pingnet",
"com.docker.compose.project": "composetest",
"com.docker.compose.version": "1.23.1"

}
}

]

127.20.0.xxx

GW

172.20.0.1

LocalhostInternet

version: '3'
services:

pinger:
image: "pinger"
ports:

- "8893:8893"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_2
pingrelay:

build: "pingrelay"
ports:

- "8004:8894"
networks:

- pingnet
volumes:

- ./data:/data
environment:

ServiceName: service_1
networks:

pingnet:

volumes:
data: {}

Do you see ”errors”?

Data

8894

8001

8893

Something very basic

192.168.1.121

80

12345

192.168.1.120

192.168.1.120:12345 -> 192.168.1.121:80

https://microchipdeveloper.com/tcpip
:tcp-ip-ports

Your task
Service/application 1 should:
• As a response to incoming Request 1 send

an HTTP GET request to Service2
• Compose a response from (4 lines of text)

• “Hello from “ + <Remote IP address and port of the incoming Request1>
“ to “ + <Local IP address and port of Service1>
Response of the above request to Service2

• Return the composed response

Service/application 2 should
• As a response to incoming Request 2 compose a response from

• “Hello from “ + <Remote IP address and port of the incoming Request2>
• “ to “ + <Local IP address and port of Service2>

• Return the composed response

• By remote address/port we means the address of the host that sent the
request. For example, in nodejs these can be tested with the following
code:

http.createServer(function (req, res) {
console.log("Req came from " + req.client.remoteAddress
+

":" + req.client.remotePort);
console.log("Req served at " + req.client.localAddress
+

":" + req.client.localPort);
}).listen(port);

• Note that the above does not exactly meet requirements

Your task
• You should write Dockerfiles for the both services

and docker-compose.yaml to start both containers
so that Service1 is exposed in port number 8001.
The docker-compose should also create a private
network that allows Services 1 and 2 to
communicate with each other but the only external access is the HTTP-port 8001 to
Service 1.

• The service1 is assumed to be under development, so the image is rebuilt often (hint
you may use ”build:” -primitive in docker-compose.yaml. Service2 is a reused
service and you may pre-build the image. Image can be stored locally though.

• After the system is ready the student should return.
• Content of Docker and docker-compose.yaml files
• Explained response to Request 1 (that contains also response from Request 2). E.g. a

Word or PDF-file where you also explain why the addresses and port-numbers are
like they are. (We want to ensure that you understand how your program works).

• Source codes of the applications in some git.

How this will be checked

$ git clone <the git url you gave>
$ docker-compose up –build
$ curl localhost:8001
<output should follow the above requirement>
$ docker-compose down

Hints

• Remember to backup your application and docker and compose files
– you will need them in the future. E.g. to gitlab.

• It might be a good idea to create and test the applications first.
• You may need to visit https://docs.docker.com/compose/ and

https://docs.docker.com/compose/networking/
• Docker images are easy to access, if they are tagged when build
• $ docker build --tag=pinger .
• If Docker image is rebuilt, docker-compose should also be given a hint

that rebuilt should override the existing one
• $ docker-compose up --build

https://docs.docker.com/compose/
https://docs.docker.com/compose/networking/

Infrastructure as code
From: https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code

Infrastructure as Code (IaC) is
• the management of infrastructure (networks, virtual machines, load

balancers, and connection topology) in a descriptive model,
• using the same versioning as DevOps team uses for source code.
• Like the principle that the same source code generates the same

binary, an IaC model generates the same environment every time it is
applied.

• IaC is a key DevOps practice and is used in conjunction
with continuous delivery.

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery

Where are
we now

21.9.2021 ssss 38

