
Lecture 9; wrapping up cloud native
Kari Systä, 02.11.2021

Course matters

•Our plan is to publish the project next week
• Long time window for returning

• I’m still waiting opinions about the exam
•About Ansible exercise

• Use of ”uptime” was a bad choice, but I do not want to change
Create an Ansible playbook that has two tasks (plays)

• Ensure (not just “check”) that the image has the latest version of git version
management system

• Queries the uptime (linux command uptime) of target host
“Check” is accepted.

• Last lecture traditional?
2.11.2021 | 2

1.11.2021 ssss 3

Com
m

unination

REST MQ

(g)RPC graphQL

API Gateway

Structute and
deploym

ent

Micro-
services FaaS

Function as a service/
serverless computing

Serverless computing
Baldini et all: Serverless Computing:

Current Trends and Open Problems, Research Advanges in Cloud Computing, Springer, 2017.

A cloud-native platform
for
• short-running, stateless computation
• event driven applications
which
• scale up and down instantly and automatically
and
• charge for actual usage and high granulatity

https://medium.com/@BoweiHan/an-introduction-to-serverless-
and-faas-functions-as-a-service-fb5cec0417b2

”… you can simply upload modular chunks of functionality into the cloud
that are executed independently.
Imagine the possibilities! Instead of scaling a monolithic REST server to
handle potential load, you can now split the server into a bunch of
functions which can be scaled automatically and independently.”

Function as a service?

API
gateway

Data storage

Function

Code

Access
control

Client

A simple example from
https://www.scalyr.com/blog/simple-detailed-
introduction-google-cloud-functions/• Package.json

{ "name": "my-first-function", "version": "0.0.1" }

• Code
exports.helloWorld = (req, res) => {

let message = req.query.message ||
req.body.message || 'Hello World!’;

res.status(200).send(message);
};

• Deploy with
gcloud functions deploy my-first-function --trigger-http \\
--runtime nodejs8 --entry-point=helloWorld

• Use as
http://<location>/my-first-function?message=BAM

https://www.scalyr.com/blog/simple-detailed-introduction-google-cloud-functions/

A simple example from
https://www.scalyr.com/blog/simple-detailed-
introduction-google-cloud-functions/• Package.json

{ "name": "my-first-function", "version": "0.0.1" }

• Code
exports.helloWorld = (req, res) => {

let message = req.query.message ||
req.body.message || 'Hello World!’;

res.status(200).send(message);
};

• Deploy with
gcloud functions deploy my-first-function --trigger-http \\
--runtime nodejs8 --entry-point=helloWorld

• Use as
http://<location>/my-first-function?message=BAM

https://www.scalyr.com/blog/simple-detailed-introduction-google-cloud-functions/

The actions with AWS Lambda
https://aws.amazon.com/getting-
started/tutorials/build-serverless-app-
codestar-cloud9

https://aws.amazon.com/getting-started/tutorials/build-serverless-app-codestar-cloud9

Claimed FaaS advantages

• Smaller for developer since infrastructure is handled by somebody
else
=> more time for writing application code

• Inherently scalable
• No need to pay for idle resources

(temptation to miss-use)
• Available and fault tolerant
• No explicit multi-tenancy
• Forces modular business logic

Claimed FaaS disadvantages

• Decreased transparency
• Maybe challenging to debug
• Autoscaling of functions may lead to autoscaling of cost
• Keeping track of huge numbers of functions is tough
• Chaching of requests?

Summary of cloud native

What it means to be Cloud Native approach — the CNCF way
https://medium.com/developingnodes/what-it-means-to-be-cloud-native-approach-the-cncf-way-9e8ab99d4923

1. Containerization
• Docker container image is a lightweight,

standalone, executable package of software
that includes everything needed to run an
application.

2. CI/CD
3. Orchestration
• Kubernetes is the market-leading orchestration

solution.
4. Observability & Analysis
• Monitoring, logging, and tracing

5. Service MESH

6. Networking and Policy
• Flexibility with authorization, admission control and

data filtering

7. Distributed Database
• When you need more resiliency and scalability than

you can get from a single database

8. Messaging

9. Container registry and runtimes

10. Sofware distribution

Serverless
Baldini et al: Serverless Computing: Current Trends and Open Problems

Edge Master

UI

API Gateway

Cloud events

Queue

Dispatcher

Worker

Worker

Worker

Microservices vs. Serverless/FaaS
(They are different – do not call serveless microservices)

• Microservice
• Small services running in their own process and communicating with

lightweight services
• Can be stateful

• Serverless / FaaS
• Short term execution triggered by a request, then closes down
• For stateless computing

Some comparison

Microservice Serverless / FaaS
Bug hunting Easier (but not easy) Difficult
Infrastructure code May be complex Minimal or even non-existent
Scaling Need to be implemented Automatic
Performance Good Possible cold-start issues
Running cost May include cost of idle time Pay only per use

Microfront-ends

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

1. Web Approach

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

2. Server-side composition

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

3. Client-side composition

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

4. Client-side rendering

Alternative architectures
(from https://morioh.com/p/ee1b48c9de16)

5. SPA composition

Organization and process issues

Revision control CI/CD pipeline Authentication

Database

Logic

UI

Database

Logic

UI

Database

Logic

UI

UI team

Stateful vs stateless computation
• If a service has an internal state it is difficult to

• Scale it
• Move it to other server or other hosting system
=> Stateless Services are subject to cloud-specific optimizations

• The internal state my be
• volatile or
• non-volatile
• ... in memory, file local to container,

• Serverless / FaaS

7R’s of cloud Micration

Replace
with imilar or

improved
but SaaS

Reuse
in the new SaaS

version

Refactor
towards cloud-

native
architecture

Replatform
by using cloud

services

Rehost
to a VM

RetireRetain

Reminder
https://thenewstack.io/10-key-attributes-of-cloud-native-applications/

• Packaged as lightweight
containers

• Developed with best-of-breed
languages and frameworks

• Designed as loosely coupled
microservices

• Centered around APIs for
interaction and collaboration

• Architected with a clean
separation of stateless and
stateful services

• Isolated from server and
operating system dependencies

• Deployed on self-service,
elastic, cloud infrastructure

• Managed through agile DevOps
processes

• Automated capabilities
• Defined, policy-driven resource

allocation

https://microservices.io/patterns/microservices.html

1.11.2021 ssss 47

Nice video about microservices

• Netflix story (Mastering Chaos - A Netflix Guide to Microservices)
<https://www.youtube.com/watch?v=CZ3wIuvmHeM>

https://www.youtube.com/watch?v=CZ3wIuvmHeM

