
DD.MM.YYYYKari Systä 1

Lecture 10

Automation

Kari Systä
09.11.2021

DD.MM.YYYYKari Systä 2

Project

API
Gateway

Develop
& test

Build Pack Deploy OperateVMS Test

DD.MM.YYYYKari Systä 3

Schedule
• The instructions disclosed: 08.11.2021

• Students can start by installing the gitlab-ci
• New versions to resolve ambiguous parts may be published later.

• Discussions in the lecture: 09.11.2021
• Students are asked to give clarification questions

• Latest submission if you want course to graded in 2021: 06.12.2021
• Latest submission to pass the course: 31.12.2021

DD.MM.YYYYKari Systä 4

Project includes
1. Install the pipeline infrastructure using gitlab-ci. This means that you should:

• install gitlab and runners on their own machine. A fresh virtual machine is recommended.
Instructions to help in this process are below in section gitlab-ci.

• Define the pipeline using .gitlab-ci.yml for the application you implemented for the
message-queue exercise. The result of the pipeline should be a running system, so the
containers should be started automatically. (In other words: “git push => the system is up
and running)

• Test the pipeline with the current version of the application.
2. Create, setup and test an automatic testing framework

• First, you need to select the testing tools. We do not require any specific tool, even your own
test scripts can be used.

• Create test to the existing functionality of the application (see “Application and its new
features” below)

3. Implement the changes and additional functionalities to the RabbitMQ exercise

DD.MM.YYYYKari Systä 5

API gateway
GET /messages

Returns all message registered with OBSE-service

PUT /state (payload “INIT”, “PAUSED”, “RUNNING”,
“SHUTDOWN”)

PAUSED = ORIG service is not sending messages
RUNNING = ORIG service sends messages
If the new state is equal to previous nothing happens.

There are two special cases:
INIT = everything is in the initial state and ORIG
starts sending again, state is set to RUNNING
SHUTDOWN = all containers are stopped

GET /state
get the value of state

GET /run-log
Get information about state changes

Example output:
2020-11-01T06:35:01.373Z: INIT
2020-11-01T06:40:01.373Z: PAUSED
2020-11-01T06:40:01.373Z: RUNNING

GET /message-log
Forward the request to HTTPSERV and return the result

GET /node-statistic (optional)
Return core statistics (the five (5) most important in your
mind) of the RabbitMQ. (For getting the information see
https://www.rabbitmq.com/monitoring.html)
Output should syntactically correct and intuitive JSON.
E.g:
{ “fd_used”: 5, …}

GET /queue-statistic (optional)
Return a JSON array per your queue. For each queue
return “message delivery rate”, “messages publishing
rate”, “messages delivered recently”, “message published
lately”. (For getting the information see
https://www.rabbitmq.com/monitoring.html)

https://www.rabbitmq.com/monitoring.html
https://www.rabbitmq.com/monitoring.html

DD.MM.YYYYKari Systä 6

End report
1. Instructions for the teaching assistant

Implemented optional features
List of optional features implemented.
Instructions for examiner to test the system.
Pay attention to optional features.

2. Description of the CI/CD pipeline
Briefly document all steps:
Version management; use of branches etc
Building tools
Testing; tools and test cases
Packing
Deployment
Operating; monitoring

3. Example runs of the pipeline
Include some kind of log of both failing test
and passing.

4. Reflections
Main learnings and worst difficulties
Especially, if you think that something should
have been done differently, describe it here.
Amount effort (hours) used
Give your estimate

DD.MM.YYYYKari Systä 7

Grading
As already been communicated this project affects 40% of in the evaluation of the overall course.
For that 40% we use the following table
Compulsory parts work according to requirements 0..20 %
Implementation of optional features 0..30 %
(each optional feature is worth of 5%)
Overall quality (clean code, good comments, ….) 0..5%
Quality of the end report 0..5% (+ up to 5% compensation of a

good analysis of your solution and
description of a better way to

implement.)
Note: optional points can compensate problems elsewhere, but the total sum is capped at 50%.
That means that max 10% can be used to compensate lost points in exercises and exam.

Gitlab CI
https://docs.gitlab.com/ee/ci/

Gitlab

Gitlab runnerGitlab runnerGitlab runnerGitlab runnerGitlab runner

.gitlab-ci.yml

http://...../user_sessions/callback

Types of runners

Shared Runners
• These runners are useful for jobs multiple projects which have similar

requirements. Instead of using multiple runners for many projects,
you can use a single or a small number of Runners to handle multiple
projects which will be easy to maintain and update.

Specific Runners
• These runners are useful to deploy a certain project, if jobs have

certain requirements or specific demand for the projects. Specific
runners use FIFO (First In First Out) process for organizing the data
with first-come first-served basis.

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Example from:
https://docs.gitlab.com/ee/user/project/
pages/getting_started/pages_from_scratch.html

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Base Image

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

This is run before
every script

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Used rules

Many variables available:
https://docs.gitlab.com/ee/
ci/variables/predefined_var
iables.html

Use of rule,
executed if rule is
“master”

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

This is for state ”deploy”.

Default states are
build, test, deploy

This is for state ”test”.

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Script to run

Never
mind J

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

File location

How to install .gitlab-ci.yml?

git add .gitlab-ci.yml
git commit -m "Add .gitlab-ci.yml”
git push origin master

variables:
TUNIPLUSSA_ID: 'TIE23536-

syksy2019'
GIT_STRATEGY: none

stages:
- build
- test
- deploy

builder:
stage: build
only:
- master
- release
tags:
- plussa
artifacts:

paths:
- FULLLOG.txt
expire_in: 2 week

script:
- tuni-rst-build

tester:
stage: test
only:
- master
tags:
- plussa
script:
- tuni-publish-to-testing

publisher:
stage: deploy
only:
- release
tags:
- plussa
script:
- tuni-publish-to-production

variables:
TUNIPLUSSA_ID: 'TIE23536-

syksy2019'
GIT_STRATEGY: none

stages:
- build
- test
- deploy

builder:
stage: build
only:
- master
- release
tags:
- plussa
artifacts:

paths:
- FULLLOG.txt
expire_in: 2 week

script:
- tuni-rst-build

tester:
stage: test
only:
- master
tags:
- plussa
script:
- tuni-publish-to-testing

publisher:
stage: deploy
only:
- release
tags:
- plussa
script:
- tuni-publish-to-production

Note: The rules syntax is an improved, more
powerful solution for defining when jobs
should run or not. Consider
using rules instead of only/except to get the
most out of your pipelines.

https://docs.gitlab.com/ee/ci/yaml/README.html

image: ruby:2.7

workflow:
rules:
- if: '$CI_COMMIT_BRANCH'

before_script:
- gem install bundler
- bundle install

pages:
stage: deploy
script:
- bundle exec jekyll build -d public

artifacts:
paths:
- public

rules:
- if: '$CI_COMMIT_BRANCH == "master"'

test:
stage: test
script:
- bundle exec jekyll build -d test

artifacts:
paths:
- test

rules:
- if: '$CI_COMMIT_BRANCH != "master"'

Example from:
https://docs.gitlab.com/ee/user/project/
pages/getting_started/pages_from_scratch.html

Is this correct?

Empty

Before script

Test

Before script

deploy

gem install bundler
bundle install

bundle exec jekyll build -d test

gem install bundler
bundle install

bundle exec jekyll build -d build

Why not?

This is correct visualization!

Empty

Before script

Test

Before script

deploy

If branch != master

If branch == master

DevOps practices

• Organizational
• increased scope of responsibilities for developers;
• intensified cooperation between development and operations.

• Technical
• automation,
• monitoring
• measurement

14.11.2021 ssss 25

Deployment pipeline (a possible example)

14.11.2021 26

About automation

Deployment pipeline (a possible example)

14.11.2021 28

Infrastructure as code
From: https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code

Infrastructure as Code (IaC) is
• the management of infrastructure (networks, virtual machines, load

balancers, and connection topology) in a descriptive model,
• using the same versioning as DevOps team uses for source code.
• Like the principle that the same source code generates the same

binary, an IaC model generates the same environment every time it is
applied.
• IaC is a key DevOps practice and is used in conjunction

with continuous delivery.

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery

Benefits of automation

• Prevent errors
• Is repeatable
• No need to write documentation
• Enables collaboration because everything is explicit in scripts
• Expertise encapsulated in scripts
• Manual work is boring
• Fast and relentless feedback
• Risk management: Automated checking and auditing

Automation includes

• Building
-> no command-line tools needed

• Testing
-> run frequently

• Other quality analysis
-> less manual inspection needed;

• Deployment
-> VMs and containers created automatically
-> configuration management

• Database tools
-> initialization
-> management

• Scaling

Automated tests

• A common practice in CI and CD
• Does not invent the test (usually);
• test are designed and implemented manually but
• executed automatically

• Tests need to maintained
• Software needs to be testable
• Not a silver bullet for testing, but necessary helper in CI/CD

Testability

•Testbed can command the software
•Tests can investigate state and results
•Proper architecture and coding style helps

e.g. Standard getters and setters
•Well-defined APIs

Unit/component
testing

Acceptance
testing

GUI
testing

Manual
testing?

Automated acceptance tests
• Acceptance tests do not test everything but is an essential “gate” if

deployment is automated.
• Some best practices (according to Humbley and Farley):

• Test in realistic environment(s)
• Acceptence tests are owned by the whole team (no separate team for it)
• Developers should be able to run the tests in their own dev environment)
• Tie to business value – not to technical solution of the system

• Nonfunctional testing
• Capacity, scalability
• Code quality analysis

RabbitMQ

OBSE

IMEDORIG

ç

Testing cloud-native is difficult
And debugging even more difficult

API
Gateway

HTTPSERV

RabbitMQ

OBSEWhat if OBSE is implemented
by a separate team that does
not now much about other services.

RabbitMQ

OBSE

RabbitMQ

OBSE

IMEDORIG

ç

API
Gateway

HTTPSERV

GET /messages

2020-10-
01T06:35:01.373Z
Topic my.o: MSG_1

Correct?

RabbitMQ

OBSE

IMEDORIG

ç

API
Gateway

HTTPSERV

GET /run-log

2020-11-01T06:35:01.373Z: INIT
2020-11-01T06:40:01.373Z:
PAUSED
2020-11-01T06:40:01.373Z:
RUNNING

Correct?

? Depends on
implementation

Testing microservices
(https://www.infoq.com/articles/twelve-testing-techniques-microservices-intro/)

Key takeaways
• Because a microservice architecture relies more on over-the-wire (remote)

dependencies and less on in-process components, your testing strategy
and test environments need to adapt to these changes.
• When testing monoliths using existing techniques like service virtualization,

you do not have to test everything together; instead, you can divide and
conquer, and test individual modules or coherent groups of components.
• When working with microservices, there are also several more options

available, because microservices are deployed typically in environments
that use containers like Docker.
• You will need to manage the interdependent components in order to test

microservices in a cost and time effective way. You can use test doubles in
your microservice tests that pretend to be real dependencies for the
purpose of the test.

Automation challenges

• ”…provisioning scripts were considered error-prone and, according to
developers, they did not work in some environments…”
• ”…automation of the network in was said to be difficult in addition to

dealing with legacy system…”
• ”Networks are pretty hard. Some of the databases are pretty hard too

because the old relational databases haven’t been designed to be
clustered…”

Automation scripts are programs
Infrastructure as code

• ”Infrastructure as code (IaC) is the process of managing and provisioning
computer data centers through machine-readable definition files, rather than
physical hardware configuration or interactive configuration tools.”

• three approaches to IaC: declarative (functional) vs. imperative (procedural)
vs. intelligent (environment aware)

tasks:
- name: ensure apache is at the

latest version
yum:
name: httpd
state: latest

- name: ensure that postgresql is started
service:
name: postgresql
state: started

apt-get install …

Infrastructure as code
All SW engineering principles should be applied.

• Testing
• Maintenance
• Documentation
• Version and configuration management

• Bugs may stop the whole engine

Huge number or tools available

• https://digital.ai/periodic-table-of-devops-tools
• https://landscape.cncf.io

https://landscape.cncf.io/
https://landscape.cncf.io/

