
Lecture 7: continuous
deployment – part 2



Main principles
(https://continuousdelivery.com/principles/)

• Build quality in
•Work in small batches
• Computers perform repetitive tasks, people solve problems
• Relentlessly pursue continuous improvement
• Everyone is responsible

Sound familiar from somewhere?



CI – essential practices
(according to Humbley and Farley)

• Don’t check in on a broken code
• Always run all commits tests locally before committing, or get your CI server 

to do it for you
• Wait for commit tests to pass before moving on
• Never go home on a broken build
• Always be prepared to revert to the previous revisions
• Time-box fixing before reverting
• Don’t comment out failing tests
• Take responsible for all breakages that result from your changes
• Test-driven development

26.9.2022 3



Deployment essential pract.
(according to Humbley and Farley)

• Only build your binaries once
• Deploy the same way to every environment
• Smoke-test your deployments
• Deploy to copy of production
• Each change should propagate through the pipeline instantly
• If any part of pipeline fails, stop the line

26.9.2022 4



Back to CD

26.9.2022 ssss 5



Continuous delivery and deployment
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-
continuous-deployment)

05.03.2018 6



Perceived benefits

• Improved delivery speed of software changes Improved speed in the 
development and deployment of software changes to production environment.
• Improved productivity in operations work. Decreased communication problems, 

bureaucracy, waiting overhead due to removal of manual deployment hand-offs 
and organisational boundaries; Lowered human error in deployment due to 
automation and making explicit knowledge of operation-related tasks to software 
development
• Improvements in quality. Increased confidence in deployments and reduction of 

deployment risk and stress; Improved code quality; Improved product value to 
customer resulting from production feedback about users and usage.
• Improvements in organisational-wide culture and mind-set. Enrichment and 

wider dissemination of DevOps in the company through discussions and 
dedicated training groups ‘communities of practice’



Maturity models in software engineering

• The first welknown was
• Capability Maturity Model developed by Software Engineering Institute at 

Carnegie Mellon University in 1986
• Five levels:

• Initial (chaotic, ad hoc, individual heroics) - the starting point for use of a new or undocumented 
repeat process.

• Repeatable - the process is at least documented sufficiently such that repeating the same steps 
may be attempted.

• Defined - the process is defined/confirmed as a standard business process
• Capable - the process is quantitatively managed in accordance with agreed-upon metrics.
• Efficient - process management includes deliberate process optimization/improvement. 

• Practical meaning may be questioned, but there has been many followers.

26.9.2022 ssss 8

https://en.wikipedia.org/wiki/Business_process


Maturity model for CD
(https://www.urbancode.com/resource/continuous-delivery-maturity-model/
was at developer.ibm.com)

• Base: The base level is enough to “be on the model”.
The team has left fully manual processes behind.
• Beginner: At the beginner level, the team is trying to adopt some ECD practices in 

earnest but is still performing them at a rudimentary level.
• Intermediate: Practices are somewhat

mature and are delivering fewer errors and more efficiency.
For many teams, Intermediate practices may be sufficient.
• Advanced: doing something well beyond what most of the rest of the industry 

and is seeing a great deal of efficiency and error prevention as a result.
• Extreme: Elements within the Extreme category are ones that are expensive to 

achieve but for some teams should be their target. Put another way, most 
organizations would be crazy to implement them, while this minority would be 
crazy to not implement them.



Another
(https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model/)

Base … started to prioritize work in backlogs, have some process defined which is rudimentarily documented 
and developers are practicing frequent commits into version control.

Beginner … teams stabilize over projects and the organization has typically begun to remove boundaries by 
including test with development. Multiple backlogs are naturally consolidated into one per team and basic 
agile methods are adopted ….
Intermediate … extended team collaboration when e.g. DBA, CM and Operations are beginning to be a part 
of the team or at least frequently consulted by the team. Multiple processes are consolidated and all 
changes, bugs, new features, emergency fixes, etc, follow the same path to production. Decisions are 
decentralized to the team and component ownership…

Advanced … team will have the competence and confidence it needs to be responsible for changes all the 
way to production. Continuous improvement mechanisms are in place … releases of functionality can be 
disconnected from the actual deployment, which gives the projects a somewhat different role. A project can 
focus on producing requirements for one or multiple teams and when all or enough of those have been 
verified and deployed to production the project can plan and organize the actual release to users separately. 

Expert …some organizations choose to make a bigger effort and form complete cross functional teams that 
can be completely autonomous. With extremely short cycle time and a mature delivery pipeline, such 
organizations have the confidence to adopt a strict roll-forward only strategy to production failures.



Another
(https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model/)

Base … one or more legacy systems of monolithic nature in terms of development, build and release. Many 
organizations at the base maturity level will have a diversified technology stack but have started to 
consolidate … to get best value from the effort spent on automation.
Beginner … the monolithic structure of the system is addressed by splitting the system into modules … this 
will also naturally drive an API managed approach to describe internal dependencies and also influence 
applying a structured approach to manage 3rd party libraries … importance of applying version control to 
database changes will also reveal itself.
Intermediate. … a solid architectural base for continuous delivery … feature hiding for the purpose of 
minimizing repository branching to enable true continuous integration. … modularization will evolve into 
identifying and breaking out modules into components that are self-contained and separately deployed. …  
start migrating scattered and ad-hoc managed application and runtime configuration into version control 
and treat it as part of the application just like any other code.
Advanced. … split the entire system into self contained components and adopted a strict api-based 
approach to inter-communication so that each component can be deployed and released individually … 
every component is a self-contained releasable unit with business value, you can achieve small and frequent 
releases and extremely short release cycles..
Expert … some organizations will evolve the component based architecture further and value the perfection 
of reducing as much shared infrastructure as possible by also treating infrastructure as code and tie it to 
application components. The result is a system that is totally reproducible from source control, from the O/S 
and all the way up to application. …



Simplified pipeline

Develop
& test

Build Pack Deploy OperateVMS Test

C++
Python



Build – which tools you know ?
• Make
• Old
• Declarative
• Hard to debug

• Ant
• Designed for Java
• Based on XML-based configuration language

• Maven



(https://www.urbancode.com/resource/continuous-delivery-maturity-model/
was at developer.ibm.com) 

BUILDING



Testing
• Automate, automate, automate
• Know any tools?

AUTOMATED

(functional
acceptance tests)

Unit tests
Integration tests

System tests

AUTOMATED

MANUAL

Showcase
Usability testing

Exploratory testing
Nonfunctonal

acceptance tests

MANUAL/AUTOM.

Business

Technology

Support
coding

Critique
project



(https://www.urbancode.com/resource/continuous-delivery-maturity-model/
was at developer.ibm.com) 

TESTING



Pack

• Binaries
• Required Libraries
• Runtime (e.g. Python)
•Manifest file
• Help files
• Localization stuff
• …

•Examples
•Windows install shield
• Java JAR
•Android APK

What else comes 
to mind?



Deployment/Delivery

• Humble and Farley write
• Creating the infrastructure (hardware, networking, middleware, …)
• Installing correct version of the application
• Configuring the application with its data

• Sounds a bit difficult?
• Text written before 2011
• First Docker release 2013



Develop
& test

Build Pack Deploy OperateVMS Test

App Developer

App users

App

App
v2

But when we have users



A possible strategy to deploy a 
new version?

App

App
v2

App



App

App
v2

GW

Problems & issues?



(https://www.urbancode.com/resource/continuous-delivery-maturity-model/
was at developer.ibm.com) >

DEPLOYING



(https://www.urbancode.com/resource/continuous-delivery-maturity-model/
was at developer.ibm.com) 

REPORTING



Deployment strategies

• Basic Deployment (aka Suicide) (https://harness.io/2018/02/deployment-
strategies-continuous-delivery/) all nodes are updated at the same time
• Rolling Deployment (https://harness.io/2018/02/deployment-strategies-

continuous-delivery/) nodes are updated incrementally,
• BlueGreenDeployment

(http://martinfowler.com/bliki/BlueGreenDeployment.html) uses a router of 
incoming traffic as the tool. In this approach the new version (called green) is set 
up in parallel with the current (blue). When new (green) is ready, the router is 
switched to new (green) and blue is left as a backup. If something goes wrong 
with new, the router can be switched back to old - that means easy “rollback”.
• Canary Releases (http://martinfowler.com/bliki/CanaryRelease.html ) implements 

the deployment incrementally. In this case the router first directs only part of the 
customers to the new version. If feedback is is good, the other customers are 
moved to new version, too

https://harness.io/2018/02/deployment-strategies-continuous-delivery/
https://harness.io/2018/02/deployment-strategies-continuous-delivery/
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/CanaryRelease.html


How about the data?

App

App v2

App

App v2Creation and
initialization



A/B Testing

05.03.2018 26

Should our
project have
A or B?

Implement a 
way to collect 

statistics

Implement A

Implement B

Deploy A

Deploy B

Usage 
statistics

Usage 
statistics

Compare



Stairway to Heaven
(As described by Jan Bosch)

26.9.2022 27



The HYPEX model (Hypothesis Experiment Data-Driven Development )

26.9.2022 28

Business
strategy and goals

Strategic product goal

Feature: expected behavior

Feature
backlog

Develop
hypothesis

Gap
analysis Product

abandon

generate

select

Actual
behavior

Implement alternative MVF

Extend MVF

Expected
behavior

No gap

Implement MVF

Adopted from
Helena Holmström  & Jan Bosch:
From Opinions to Data-Driven Software R&D:
A Multi-case Study on How to Close the 'Open Loop‘
Problem



Data-driven software development
1. Planning of the data collection
2. Deployment of data collection
3. Monitoring of the applications
4. Picking up the relevant data
5. Pre-processing – filtering and 

formatting – the data
6. Sending and/or saving

the data
7. Cleaning and unification

of the data
8. Storing the data

9. Visualizations and analysis

10. Decision making

26.9.2022 Sampo Suonsyrjä@SEKE2016 29

Business
strategy and goals

Strategic product goal

Feature: expected behavior

Feature
backlog

Develop
hypothesis

Gap
analysis Product

abandon

generate

select

Actual
behavior

Implement alternative MVF

Extend MVF

Expected
behavior

No gap

Implement MVF

1

2

3
45

67
8

9

10


