(.

'I'J Tampere University

Communication patterns
Kari Systi, 26.10.2021

Architectural principles of REST

Client-server architecture

Statelessness
* Everybody gets same answer
* Repeated operation (GET, PUT) does not have an effect

Cacheability
* For performance and scalability

Layered system
e Allows proxies etc

Uniform interface

Kari Systa DD.MM.YYYY

Uniform interface

Everything is a resource that is fetched, modified, created, deleted
* CRUD = CREATE, READ, UPDATE, DELETE
e HTTP verbs: GET, PUT, POST, DELETE
* Resource manipulation through representations

Resource identification in requests

* URIs
e Separated from representation (XML, JSON,...)
* MIME-types

Self-descriptive messages

Hypermedia as the engine of application state (HATEOAS)

Kari Systa DD.MM.YYYY

https://en.wikipedia.org/wiki/HATEOAS

(- Tampereen yliopisto B a C k to O | d p | Ct U re

Tampere University

Address

Request

Response

J
(D
%
O
O
>
n
(M

12.10.2022 e

.

=[] Tampereen yliopisto

Tarmpere Urersty Corner-stones of REST

e Client-server architecture
 Separation of concerns

 Statelessness
* no client context being stored on the server between requests

* Cacheability
e Layered system
* Client does not know if connected to other end directly

 Uniform interface

Do not call your design for previous exercise REST!

.

=[] Tampereen yliopisto
Tampere University

Uniform representation

* Resource identification in requests
* URIs
e Separated from representation (XML, JSON,...)

* Resource manipulation through representations
* Self-descriptive messages
* Hypermedia as the engine of application state (HATEOAS)

* Application to HTTP
 URL’s
* GET, PUT, POST, DELETE
* MIME-types

https://en.wikipedia.org/wiki/HATEOAS

.

=[] Tampereen yliopisto
Tampere University

But the “calls” can be laborous

let message = "Hello from " + req.client.remoteAddress + ":" +
reg.client.remotePort + " to " + req.client.localAddress + ":" +
reg.client.localPort;

request ('http://server2:4000/getServer’, { json: true },
(err, response, body) => {
if (err) {
return console.log(err);

}

res.send (message + " " + body); });

EST Vs RPC

C Tampereen yliopisto
J mmesomesy gRPC — RPC over HTTP

APl definition
with IDL

| Stub l

Client 1

(" grpC

- | service

Request Service

Client 2

Response

.

=[] Tampereen yliopisto
Tampere University

Example API description

service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}
// Sends another greeting
rpc SayHelloAgain (HelloRequest) returns (HelloReply) ({}

}

// The request message containing the user's name.
message HelloRequest { string name = 1; }

// The response message containing the greetings message
HelloReply { string message = 1; }

Crj e Call in JavaScript and Python

Tampere University

function main() {
var client new hello _proto.Greeter('localhost:50051"',

grpc.credentials.createInsecure());
client.sayHello({name: 'you'}, function(err, response) {

console. log('Greeting:', response.message);

b))

client.sayHelloAgain({name: 'you'}, function(err, response) {
console. log('Greeting:', response.message);

});
i

def run():

channel = grpc.insecure_channel('localhost:50051")
stub helloworld_pb2_grpc.GreeterStub(channel)
response = stub.SayHello(helloworld_pb2.HelloRequest(name="you'))

print("Greeter client received: " response.message)

response = stub.SayHelloAgain(helloworld_pb2.HelloRequest(name="you'))
print("Greeter client received: " response.message)

.

=[] Tampereen yliopi_sto
Tampere University std::string SayHelloAgain(const std::string& user) {

And C++ HelloRequest request;

request.set_name(user);
HelloReply reply;

ClientContext context;

Status status stub_->SayHelloAgain(&context, request, &reply);
if (status.ok()) {
return reply.message();
} else {
std: :cout status.error_code() - status.error_message()
stdzendls
return "RPC failed";

")z GraphQL(examples from

https://medium.com/tech-tajawal/backend-for-frontend-using-graphgl-under-microservices-5b63bbfcd7d9)

* REST request * GraphQLl request
GET http://127.0.0.1/api/accounts POST http://127.0.0.1/graphqgl
* Payload

* Response query {accounts {id, name, photo}}
[* Response

"id": 88, {n ",

"name": "Mena Meseha", data": 1{: "

"photo": "http://..m/photo.jpg" aﬁci’g‘,",‘? 38 LA

b "name": "Mena Meseha" ,
i "photo" :
"http://...com/photo.jpg"
i
}

http://127.0.0.1/api/accounts
http://127.0.0.1/graphql

.

=[] Tampereen yliopisto
Tampere University

Let’s analyze some claims of the previous source

e 1. Data Acquisition: REST lacks scalability and GraphQL can be accessed on
demand. The payload can be extended when the GraphQL APl is called.

e 2. API calls: REST’s operation for each resource is an endpoint, and
GraphQL only needs a single endpoint, but the post body is not the same.

* 3. Complex data requests: REST requires multiple calls for nested complex
data, GraphQL calls once, reducing network overhead.

* 4. Error code processing: REST can accurately return HTTP error code,
GraphQL returns 200 uniformly, and wraps error information.

5. Version number: REST is implemented via vl1/v2, and GraphQL is
implemented through the Schema extension.

(.

- Tampereen yliopisto

Tampere Universty How about external calls?

=}

API

gateway »

Client2 E

(. N
[) Tmperecninie AP| gateway pattern

https://microservices.io/patterns/apigateway.html|

Problem
 How do the clients of a Microservices-based application access the individual services?
Forces

* The granularity of APIs provided by microservices is often different than what a client
needs and too fine grained.

 Different clients need different data.

* Network performance is different for different types of clients.

* Partitioning into services can change over time and should be hidden from clients

* Services might use a diverse set of protocols, some of which might not be web friendly
Solution

* Implement an API gatewa¥ that is the single entry point for all clients. The API gateway
handles requests in one of two ways. Some requests are simply proxied/routed to the
appropriate service. It handles other requests by fanning out to multiple services.

https://microservices.io/patterns/apigateway.html

.

=[] Tampereen yliopisto

remeereUnversty RECALL Interface segregation principle

“many client-specific interfaces are better than one general-purpose interface.”
“Make fine grained interfaces that are client specific”

“Clients should not be forced to depend upon methods they do not use”
* Big system with many dependencies = small change causes changed everywhere
e Large interfaces are split to smaller and role-base interfaces.

—>changes do not affect everybody

—>New features are easier to add

—>Interfaces are easier to learn

.

= Tampereen yliopisto

Tampere University Ot h e r CO n Ce r n S

Application architecture patterns

* Which architecture should you choose for an application?
Decomposition

* How to decompose an application into services?

Data management

* How to maintain data consistency and implement queries?
Transactional messaging

* How to publish messages as part of a database transaction?
Testing

* How to make testing easier?

Deployment patterns

* How to deploy an application’s services?

Cross cutting concerns

* How to handle cross cutting concerns?

Communication patterns

.

[T] Tampereen yliopisto
Tampere University

Message queue approach

.

=[] Tampereen yliopisto
Tampere University

Message-bus instead of HTTP

* Challenges of REST and RPC: increased network operations, tight
service coupling

* Message bus helps to define how services communicate, service
discovery reduces operational complexity

* Asynchronous messaging leads to

* loosed coupling
* More complex logic (async a cousin of parallelism)

* Actually, there are multiple options
* RPC, REST, Asynchronous message, application-specific protocols

.

=[] Tampereen yliopisto
Tampere University

Message-bus instead of HTTP

* Challenges: increased network operations, tight service coupling

* Message bus helps to define how services communicate, service
discovery reduces operational complexity

* Asynchronous messaging leads to

* loosed coupling
* More complex logic (async is a cousin of parallelism)

* Actually, there are multiple options
* RPC, REST, Asynchronous message, application-specific protocols

.

=[] Tampereen yliopisto
Tampere University

The message bus approach

Message bus middleware for loose coupling

oo

Common understanding
of the data.
(Common data model)

.

=[] Tampereen yliopisto
Tampere University

RabbitMQ

* An example of message queue technology
* Can be used to implement various architectures

(. . .
D) ooy EXamples of RabbitMQ use
https://www.rabbitmg.com/getstarted.html|

Simple queue Task distribution Publish/subscribe

" - oelme

amgp.gen-S9b...

12.10.2022 SSSS 24

.

=[] Tampereen yliopisto
Tampere University

Publish-subscribe

12.10.2022

.

=[] Tampereen yliopisto
Tampere University

Message queue

12.10.2022 SSSS

.

=[] Tampereen yliopisto

Tampers Unversty An example of topic-based communication
(adopted from https://www.rabbitmg.com/tutorials/tutorial-five-python.html)

.orange.®

quick.orange.fox quick.orange.fox
lazy.brown.fox

lazy.orange.elephant

lazy.orange.elephant

lazy.orange.elephant
quick.brown.fox
lazy.brown.fox

lazy.#
* *.rabbit

12.10.2022 SSSS 27

.

=[] Tampereen yliopisto

Tampere University . . .
RabbitMQ — steps in practice
Connect
Connect Create Channel
Create Channel Consume
Send
Wait...
Close

https://www.rabbitmg.com/tutorials/tutorial-
_ one-javascript.html

This tutorial assumes RabbitMQ is installed and
_ running on localhost on standard port (5672). In

case you use a different host, port or credentials,

connections settings would require adjusting.

https://www.rabbitmq.com/download.html

.

=[] Tampereen yliopisto
Tampere University

Comparison

12.10.2022

SSSS

29

(.

- Tampereen yliopisto

Tampere University CO NnNse q uences

Independent Independent Minimum centralized
development deployment management

REST

gRPC

Message queue

.

=[] Tampereen yliopisto
Tampere University

Can be used in many ways

gRPC

Message queue

Standard ways to document
Designed for intependent

No standards: need to be
agreed on

A

The queue even suppors

Designed for
intependent

)

CES

Independen

deployment

interrupts

Practically none on top of
Network infra

/

Vi ey [Practically none on
top of
Network infra

N

The message queue needs
to be maintained

C Tampereen yliopisto N eXt exe rC | S e

Tampere University

You create a bigger system of several processes and message queue
infrastructure

Grading policy:
* maximum 6 points are given (total of the course will be about 50)

* missing the deadline: points reduced by 0.5 points / day
* how well the requirements are met: 2p

* following the good programming and docker practices: 2p
e quality of the document: 2p
Deadlines:

* for full points: 09.11
* for any points: 21.11

.

- Tampereen yliopisto
Tampere University

ORIG IMED
Original Intermediate

ANAEN

/
RabbitMQ
) “ N
OBSE
Observer
Write
\ 4

HTTPSERV ---Read -- >L(F';)\I

12.10.2022 SSSS

(- . .
D Tampere University B e h aVI o r O BS E

On any message from any of the topics:
builds a string “{timestamp} Topic {topic}: {message}”

* ORIG publishes 3 messages to without quotes
i - {timestamp} must be in the format YYYY-MM-
tOpIC my.o . DDThh:mm:ss.sssZ (ISO 8601)
MSC.;J Time zone is UTC
(Wait for 3 seconds) {topic} is the topic that delivered the message
MSG_2 {message} is the message body
(Wait for 3 seconds) example:
MSG 3 2020-10-01T06:35:01.373Z Topic my.o: MSG 1
. ||\/|E_D writes the string into a file in a Docker volume
If OBSE is run multiple times, the file must be
Every time IMED receives a message from deleted/cleared on startup
topic my.o:
IMED waits for 1 second * HTTPSERV
After waiting, IMED publishes “Got {received When requested, returns content of the file created by
message}” without quotes to topic my.i OBSE (Nothing else)
For example: Port: 8080
Got MSG 1 Example:

2020-10-01T06:35:01.373Z Topic my.o: MSG 1
2020-10-01T06:35:01.973Z Topic my.i: Got MSG 1

(_ .
) Tampere University R et u rn I n g

Source code of your application

Docker Compose file (YAML)

All Docker files

Any other files required to build and run the system

A document in which you cover at least

* Perceived (in your mind) benefits of the topic-based
communication compared to request-response (HTTP)

* Your main learnings

CD Tampere University TeSt i n g

$ git clone <the git url you gave>

S docker-compose build —--no-cache

$ docker-compose up -d

(Wait for at most 30 seconds...)

S curl localhost:8080

<output should follow the requirements>

S docker-compose down

