
COMP.SE.140

Dependencies

Unix/Linux

Clib

Application

Unix/Linux

Clib

JavaScript

Nodejs

Libraries

Application

Remember container use case example

• Your application needs
• Certain version of nodejs
• Set of libraries (certain versions)
• Mongo database

1.11.2022 ssss 5

• Your system has
• Wrong version of nodejs
• Mongo serving another application

• Solution
• Create a docker image (container)
• Install the image
• Run the image

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

node:<version>
This is the defacto image. If you are unsure about
what your needs are, you probably want to use
this one. It is designed to be used both as a throw
away container (mount your source code and
start the container to start your app), as well as
the base to build other images off of.

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

node:<version>-slim
This image does not contain the common packages
contained in the default tag and only contains the
minimal packages needed to run node. Unless you are
working in an environment where only the node image
will be deployed and you have space constraints, we
highly recommend using the default image of this
repository.

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

node:<version>-alpine

This image is based on the popular Alpine Linux project, available in the
alpine official image. Alpine Linux is much smaller than most
distribution base images (~5MB), and thus leads to much slimmer
images in general.

This variant is highly recommended when final image size being as
small as possible is desired. The main caveat to note is that it does use
musl libc instead of glibc and friends, so certain software might run
into issues depending on the depth of their libc requirements.
However, most software doesn't have an issue with this, so this variant
is usually a very safe choice. See this Hacker News comment thread for
more discussion of the issues that might arise and some pro/con
comparisons of using Alpine-based images.

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

Some of these tags may have names like buster, jessie, or
stretch in them. These are the suite code names for
releases of Debian and indicate which release the image is
based on. If your image needs to install any additional
packages beyond what comes with the image, you'll likely
want to specify one of these explicitly to minimize breakage
when there are new releases of Debian.

Browser client Headless client

Web (HTTP)
server

Application server

Database

Other parts of the
information system

Cloud

Browser client

Web (HTTP) server

service

Database

Other parts of the
information system

Cloud

service

service

Different implementations
Updated ”whenever”

Different run-times and
programming languagesDeployed independently

Browser client

Web (HTTP) server

service

Database

Other parts of the
information system

Cloud

service

service

<script “…”>
Protocol-related changes

https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html

The old way

Static approach
• Libraries come with the compiler, or

are intalled to the development tool
• Compiler integrates application with

libraries
• The integrated system is deployed

to users

The Web & Cloud way

Dynamic approach
• Libraries are downloaded in a

dynamic manner
• Huge number of libraries available,

use each other, and are frequently
updates (continuous delivery)

• npm
• pip

Package.json
{

"name": "service1",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC",
"dependencies": {

"express": "4.17.1",
"request": "2.88.0"

}
}

Development vs use

Test
Test

npm install … npm install …

Test

npm install …

Deploy

npm install …

Use

Test Deploy Use

package-lock.json is automatically generated for any operations where npm
modifies either the node_modules tree, or package.json. It describes the
exact tree that was generated, such that subsequent installs are able to
generate identical trees, regardless of intermediate dependency updates.
This file is intended to be committed into source repositories, and serves
various purposes:
• Describe a single representation of a dependency tree such that

teammates, deployments, and continuous integration are guaranteed to
install exactly the same dependencies.
• Provide a facility for users to “time-travel” to previous states

of node_modules without having to commit the directory itself.
• To facilitate greater visibility of tree changes through readable source

control diffs.
• And optimize the installation process by allowing npm to skip repeated

metadata resolutions for previously-installed packages.

Package.json
{

"name": "service1",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC",
"dependencies": {

"express": "4.17.1",
"request": "2.88.0"

}
}

• Does not say anything about versions of packages
used by express and request

• Allows use of later versions

• What is a possible problem with this?

Package-lock.json

npm ls

Nodejs has also changed (for example)
2018-10-23, Version 11.0.0 (Current), @jasnell
Notable Changes
Build

FreeBSD 10 is no longer supported. #22617
child_process

The default value of the windowsHide option has been changed to true. #21316
console

console.countReset() will emit a warning if the timer being reset does not
exist. #21649
console.time() will no longer reset a timer if it already exists. #20442

Dependencies
V8 has been updated to 7.0. #22754

fs
The fs.read() method now requires a callback. #22146
The previously deprecated fs.SyncWriteStream utility has been removed.#20735

https://github.com/nodejs/node/pull/22617
https://github.com/nodejs/node/pull/21316
https://github.com/nodejs/node/pull/21649
https://github.com/nodejs/node/pull/20442
https://github.com/nodejs/node/pull/22754
https://github.com/nodejs/node/pull/22146
https://github.com/nodejs/node/pull/20735

Npm versions
• 6.12.0 15 days ago
• 6.12.0-next.0 a month ago
• 6.11.3 2 months ago
• 6.11.2 2 months ago
• 6.11.1 2 months ago
• 6.11.0 2 months ago
• 6.10.3 3 months ago
• 6.10.2 3 months ago

https://www.npmjs.com/package/npm/v/6.12.0
https://www.npmjs.com/package/npm/v/6.12.0-next.0
https://www.npmjs.com/package/npm/v/6.11.3
https://www.npmjs.com/package/npm/v/6.11.2
https://www.npmjs.com/package/npm/v/6.11.1
https://www.npmjs.com/package/npm/v/6.11.0
https://www.npmjs.com/package/npm/v/6.10.3
https://www.npmjs.com/package/npm/v/6.10.2

New in NPM 5

2. Lockfiles
With npm@5, lockfiles are the default (package-lock.json). This simply
means that whatever files you get when you install a package will be
the same every time you install that package after initial install. This
eliminates the challenges developers had with having different files on
different developer environments after installing the same package.

And the language (ECMAScript / JavaScript)
ES5 (2009)
• This is the baseline version of JS which

you can generally assume all run-times
(except really old ones!) will support.

ES6 / ES2015
• Standard Modules — import and export
• Standardised Promises
• Classes & Inheritance
• Block-scoped variables — let and const
• Template Literals
• Object destructing into variables
• Generator functions
• Map and Set data structures
• Internationalisation for Strings, Numbers

and Dates via Intl API

ES7 / ES2016
• Array.includes()
• Numeric exponent (power of) operator **
ES8 / ES2017
• Async Functions
• Object.entries
• String padding functions
ES9 / ES2018
• Object Rest/Spread const obj = { ...props };
• Asynchronous Iteration for await (...) {
• Promise finally() function
• Regular expression enhancements

(lookbehind, named groups)

Development vs use

Test
Test

npm install … npm install …

Test

npm install …

Deploy

npm install …

Use

Test Deploy Use

Base images used in exercise 4
• node:10 20
• node:10-alpine 3
• node:10.15.3-stretch 1
• node:10.16.3-alpine 1
• node:11 1
• node:11-alpine 1
• node:12 1
• node:12.2-alpine 1
• node:8.16.1-alpine 1
• node:8.16.1-jessie-slim 1
• node:alpine 1
• node:latest 2

• golang:alpine AS builder 1
• golang:latest 1
• python 1
• python:3 2
• python:3.6 2
• python:3.7-alpine 2
• python:latest 2
• ubuntu:latest 1

git clone ..
docker-compose up

Towards solutions?

• Build a docker image and deploy that?

• Use package-lock.json and installation scripts?

