
COMP.SE.140 – Docker-compose hands on

Version history

V1.0 27.09.2022 Initial version – based on last year
V1.1 29.09.2022 Couple of clarifications
V1.2 03.09.2022 More clarifications

Synopsis
The purpose of this exercise is to learn how to create a system of interworking services that
started up and stopped together. This requires creation of your own Dockerfile and docker-
compose.yaml, and also creation the simple applications. The applications can be implemented in
any programming language (shell script and HTML not allowed).
Learning goals

• Learn some hands on with Docker Compose. This is needed in the next steps of the course.
• Understand the runtime context of Docker containers, for instance networks and volumes.

Task definition
In this exercise we will build a simple system composed of two small services. The first service is
exposed to outside world and the other is internal. Thus, the target is the following:

Figure 1. Architecture of the target system.

Service/application 1 should:

• As a response to incoming Request 1 send a HTTP GET request to Service2
• Compose a response from (4 lines of text)

“Hello from “ + <Remote IP address + port of incoming Request11 separated with colon (:)>
“ to “ + <Local IP address and port of Service1 separated with colon (:)>
The response from for the above request to Service2

• Return the composed response
Service/application 2 should

• As a response to incoming Request 2 compose a response (two lines) from
“Hello from “ + <Remote IP address/DNS name and port of the incoming Request2 separated with
colon (:)>
“ to “ + <Local IP address/DNS name and port of Service2 separated with colon (:)>

1 See the figure

• Return the composed response.
It IP address may be IP4 or IP6 address – depending on the system. For example the “:ffff:”-prefix
provided by some libraries can be included.
By remote address/port we mean the address of the host that sent the request. For example, in
nodejs these can be queried with the following code:

http.createServer(function (req, res) {
 console.log("Req came from " + req.client.remoteAddress + ":" + req.client.remotePort);
 console.log("Req served at " + req.client.localAddress + ":" + req.client.localPort);
}).listen(8893);

The responses should be given in plain-text (not encoded in HTML).
In Golang you can use http.Request.RemoteAddr and http.Request.host. NOTE: Python has
several HTTP libraries, some libraries do not give access to this information. Do not use such
libraries.
You should write Dockerfiles for the both services and docker-compose.yaml to start both
containers so that Service1 is exposed in port number 8001. The docker-compose should also
create a private network that allows Services 1 and 2 to communicate with each other but the only
external access is the HTTP-port 8001 to Service 1.
The built images should have the application installed. Do not “install” it by bringing it on a
volume.
The service1 is assumed to be under development, so the image is rebuilt each time the system is
booted. (hint you may want to use ”build:”-attribute for that service in docker-compose.yaml.
Service2 is a reused service and you may pre-build the image. Image can be stored locally though.)
After the system is ready the student should return (in the git repository – in branch compose).

• Content of two Docker and docker-compose.yaml files
• A PDF document with the following content:

o explanation why the addresses and port-numbers are like they are. (We want to
ensure that you understand how your program works).

o Output of “docker container ls” and “docker network ls” (executed
when the services are up and running.

• Source codes of the applications.

Please do not include extra files in the repository.
These files are returned with some git service. Courses-gitlab repositories have been created to
course-gitlab, but you do not need to do that. Any git-repo that the staff can access is ok. You
should prepare your system in a way that the course staff can test the system with the following
procedure (on Linux):

$ git clone -b compose <the git url you gave>
$ docker-compose up –build
$ curl localhost:8001
<output should follow the above requirement; 4 lines
Hello from XXXX:P…
to …
Hello from …
to …
>
$ docker-compose down

Grading
The points from this exercise depend on timing and content:

• maximum 12 points are given. Note that the plus-environment had erroneous 8 points for
a while. If you submitted during that, your points will be scale.

• missing the first deadline (09.10.2022): points reduced by 1 points / day. Unfortunately,
this cannot be coded sensibly to Plus.

• how well the requirements (including technical instructions to the submit your project) are
met: 8p

• following the good programming and docker practices: 4p

Hints
It might be a good idea to create and test the applications first.

Do not provide the link from the browser (the one you see when you access your repo) – that does
not work with git clone.

If you use Python, note that some libraries do not provide access to remote address. Do not use
such library!

Useful material:
https://docs.docker.com/compose/,
https://docs.docker.com/compose/networking/
Docker images are easy to access, if they are tagged when built

$ docker build --tag=pinger .

If Docker image is rebuilt, docker-compose should also be given a hint that rebuilt should override
the existing one

$ docker-compose up --build

