Tampere University

Intro to cloudnative Kari Systä, 12.10.2021

What are typical cloud applications

Networks of containers!


```
Logically like:
A() {
   B();
   C();
   D();
}
```

```
But implemented as
inter-process communication.
A() {
    http.get(B:80);
    http.get(C:80);
    http.get(D:80);
```

Often considered as corner-stone of cloud-native

Docker Swarm

- Clustering for scalability
- A swarm is a group of host running docker in swarm mode
- A host can be either a manager or worker
- Workers run services
- Manager assigns tasks to worker nodes
 - Load balancing

Scalability is important, too

Docker swarm - docker compose both support cloud-native

Docker compose

Orchestration

Cloud-native should support Orchestration vs Choreography

12.10.2022 ssss 5

FIWARE platform architecture

FIWARE Core
Component

Dashboard
Component

Data Management
Component

Database

Access control,
proxy server

FIWARE access control components (Keyrock, Wilma and AuthZForce) are not included in this document.

Cloud-native applications and architectures

Some definitions

- If an app is "cloud-native," it's specifically designed to provide a consistent development and automated management experience across private, public, and hybrid clouds.
- A native cloud application (NCA) is a program that is designed specifically for a cloud computing architecture.
 - NCAs are designed to take advantage of cloud computing frameworks,
 - which are composed of loosely-coupled cloud services.
 - That means that developers must break down tasks into separate services that can run on several servers in different locations.
 - Because the infrastructure that supports a native cloud app does not run locally,
 NCAs must be planned with redundancy in mind so the application can withstand
 equipment failure and be able to re-map IP addresses automatically should hardware
 fail.

Some links

- 10 Key Attributes of Cloud-native Applications, < https://thenewstack.io/10-key-attributes-of-cloud-native-applications/>
- What are cloud-native applications?
 https://opensource.com/article/18/7/what-are-cloud-native-apps>
- Native cloud application (NCA),
 https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA>
- Understanding cloud-native applications,
 https://www.redhat.com/en/topics/cloud-native-apps>
- David S. Linthicum, Cloud-Native Applications and Cloud Migration: The Good, the Bad, and the Points Between, IEEE Cloud Computing, December 2017.

Some links
• 10 Key Attributes of Cloud-native Applications, < https://thenewstack.io/10- ttes-of-cloud-native-applications/>

What an

applications?

1. Packaged as lightweight containers

- 2. Developed with best-of-breed languages and frameworks
- 3. Designed as loosely coupled microservices
- 4. Centered around APIs for interaction and collaboration
- 5. Architected with a clean separation of stateless and stateful services
- 6. Isolated from server and operating system dependencies
- 7. Deployed on self-service, elastic, cloud infrastructure
- 8. Managed through agile DevOps processes
- 9. Automated capabilities
- 10. Defined, policy-driven resource allocation

ops>

h: The ecember

David S. Linthicum, Cloud-Native Applications and Cloud Migration: The Good, the Bad, and the Points Between, IEEE Cloud Computing, December 2017

- **Performance**. You'll typically provide better performance than is possible with non-native features. For example, you can deal with an input/output (I/O) system that works with autoscaling and load balancing features.
- **Efficiency**. Cloud-native applications' use of cloud-native features and application programming interfaces (APIs) should provide more efficient use of underlying resources. That translates to better performance and/or lower operating costs.
- **Cost**. Applications that are more efficient and typically cost less to run. Cloud providers send you a monthly bill based upon the amount of resources consumed, so if you can do more with less, you save on dollars spent.
- Scalability. Because you write the applications to the native cloud interfaces, you
 have direct access to the autoscaling and load-balancing features of the cloud
 platform.