
Communication patterns
Kari Systä, 26.10.2021

DD.MM.YYYYKari Systä 2

Architectural principles of REST

• Client-server architecture

• Statelessness
• Everybody gets same answer
• Repeated operation (GET, PUT) does not have an effect

• Cacheability
• For performance and scalability

• Layered system
• Allows proxies etc

• Uniform interface

DD.MM.YYYYKari Systä 3

Uniform interface

• Everything is a resource that is fetched, modified, created, deleted
• CRUD = CREATE, READ, UPDATE, DELETE
• HTTP verbs: GET, PUT, POST, DELETE
• Resource manipulation through representations

• Resource identification in requests
• URIs
• Separated from representation (XML, JSON,…)
• MIME-types

• Self-descriptive messages

• Hypermedia as the engine of application state (HATEOAS)

https://en.wikipedia.org/wiki/HATEOAS

Back to old picture

26.9.2023 ssss 4

Request

Request

Response

Response

Address

Corner-stones of REST
• Client-server architecture

• Separation of concerns

• Statelessness
• no client context being stored on the server between requests

• Cacheability

• Layered system
• Client does not know if connected to other end directly

• Uniform interface

Do not call your design for previous exercise REST!

Uniform representation

• Resource identification in requests
• URIs
• Separated from representation (XML, JSON,…)

• Resource manipulation through representations
• Self-descriptive messages
• Hypermedia as the engine of application state (HATEOAS)
• Application to HTTP

• URL’s
• GET, PUT, POST, DELETE
• MIME-types

https://en.wikipedia.org/wiki/HATEOAS

But the ”calls” can be laborous

let message = "Hello from " + req.client.remoteAddress + ":" +
req.client.remotePort + " to " + req.client.localAddress + ":" +
req.client.localPort;

request('http://server2:4000/getServer’, { json: true },
(err, response, body) => {

if (err) {
return console.log(err);

}
res.send(message + " " + body); });

DD.MM.YYYYKari Systä 8

gRPC – RPC over HTTP

Service

gRPC
service

Client 1

Stub

Client 2

Stub

Request

Response

API definition
with IDL

Example API description

service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}
// Sends another greeting
rpc SayHelloAgain (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest { string name = 1; }

// The response message containing the greetings message
HelloReply { string message = 1; }

Call in JavaScript and Python

And C++

GraphQL(examples from
https://medium.com/tech-tajawal/backend-for-frontend-using-graphql-under-microservices-5b63bbfcd7d9)

• REST request
GET http://127.0.0.1/api/accounts

• Response
[

{
"id": 88,
"name": "Mena Meseha",
"photo": "http://..m/photo.jpg"

},
...
]

• GraphQL request
POST http://127.0.0.1/graphql
• Payload
query {accounts {id, name, photo}}
• Response
{
"data": {
"accounts": [{
"id": 88,
"name": "Mena Meseha",
"photo":
"http://...com/photo.jpg"

},
...
]

}
}

http://127.0.0.1/api/accounts
http://127.0.0.1/graphql

Let’s analyze some claims of the previous source

• 1. Data Acquisition: REST lacks scalability and GraphQL can be accessed on
demand. The payload can be extended when the GraphQL API is called.
• 2. API calls: REST’s operation for each resource is an endpoint, and

GraphQL only needs a single endpoint, but the post body is not the same.
• 3. Complex data requests: REST requires multiple calls for nested complex

data, GraphQL calls once, reducing network overhead.
• 4. Error code processing: REST can accurately return HTTP error code,

GraphQL returns 200 uniformly, and wraps error information.
• 5. Version number: REST is implemented via v1/v2, and GraphQL is

implemented through the Schema extension.

26.9.2023 ssss 14

How about external calls?

Client
API

gateway

Client2

API gateway pattern
https://microservices.io/patterns/apigateway.html

Problem
• How do the clients of a Microservices-based application access the individual services?
Forces
• The granularity of APIs provided by microservices is often different than what a client

needs and too fine grained.
• Different clients need different data.
• Network performance is different for different types of clients.
• Partitioning into services can change over time and should be hidden from clients
• Services might use a diverse set of protocols, some of which might not be web friendly
Solution
• Implement an API gateway that is the single entry point for all clients. The API gateway

handles requests in one of two ways. Some requests are simply proxied/routed to the
appropriate service. It handles other requests by fanning out to multiple services.

https://microservices.io/patterns/apigateway.html

RECALL Interface segregation principle

“many client-specific interfaces are better than one general-purpose interface.”
“Make fine grained interfaces that are client specific”
“Clients should not be forced to depend upon methods they do not use”
• Big system with many dependencies = small change causes changed everywhere
• Large interfaces are split to smaller and role-base interfaces.

Þchanges do not affect everybody
ÞNew features are easier to add
ÞInterfaces are easier to learn

26.9.2023 17

Other Concerns
Application architecture patterns
• Which architecture should you choose for an application?
Decomposition
• How to decompose an application into services?
Data management
• How to maintain data consistency and implement queries?
Transactional messaging
• How to publish messages as part of a database transaction?
Testing
• How to make testing easier?
Deployment patterns
• How to deploy an application’s services?
Cross cutting concerns
• How to handle cross cutting concerns?
Communication patterns

Message queue approach

26.9.2023 ssss 19

Message-bus instead of HTTP

• Challenges of REST and RPC: increased network operations, tight
service coupling

• Message bus helps to define how services communicate, service
discovery reduces operational complexity

• Asynchronous messaging leads to
• loosed coupling
• More complex logic (async a cousin of parallelism)

• Actually, there are multiple options
• RPC, REST, Asynchronous message, application-specific protocols

Message-bus instead of HTTP

• Challenges: increased network operations, tight service coupling
• Message bus helps to define how services communicate, service

discovery reduces operational complexity
• Asynchronous messaging leads to

• loosed coupling
• More complex logic (async is a cousin of parallelism)

• Actually, there are multiple options
• RPC, REST, Asynchronous message, application-specific protocols

The message bus approach

26.9.2023 ssss 22

Message bus middleware for loose coupling

Common understanding
of the data.
(Common data model)

RabbitMQ

• An example of message queue technology
• Can be used to implement various architectures

26.9.2023 ssss 23

Examples of RabbitMQ use
https://www.rabbitmq.com/getstarted.html

26.9.2023 ssss 24

Simple queue Task distribution Publish/subscribe

Routing Topics

Publish-subscribe

26.9.2023 ssss 25

Message queue

26.9.2023 ssss 26

An example of topic-based communication
(adopted from https://www.rabbitmq.com/tutorials/tutorial-five-python.html)

26.9.2023 ssss 27

P1

P2

X

.orange.

lazy.#
..rabbit

quick.orange.fox quick.orange.fox

lazy.brown.fox

lazy.brown.fox

lazy.orange.elephant

lazy.orange.elephant

lazy.orange.elephant
quick.brown.fox

RabbitMQ – steps in practice

Connect
Create Channel
Send
Wait…
Close

Connect
Create Channel
Consume

https://www.rabbitmq.com/tutorials/tutorial-
one-javascript.html
This tutorial assumes RabbitMQ is installed and
running on localhost on standard port (5672). In
case you use a different host, port or credentials,
connections settings would require adjusting.

https://www.rabbitmq.com/download.html

Comparison

26.9.2023 ssss 29

Consequences

Independent
development

Independent
deployment

Minimum centralized
management

REST

gRPC

Message queue

Consequences

Independent
development

Independent
deployment

Minimum centralized
management

REST

gRPC

Message queue

Standard ways to document
Designed for intependent

Designed for
intependent

Can be used in many ways

Practically none on top of
Network infra

No standards: need to be
agreed on

The message queue needs
to be maintained

The queue even suppors
interrupts

Practically none on
top of

Network infra

Next exercise

You create a bigger system of several processes and message queue
infrastructure
Grading policy:

• maximum 6 points are given (total of the course will be about 50)
• missing the deadline: points reduced by 0.5 points / day
• how well the requirements are met: 2p
• following the good programming and docker practices: 2p
• quality of the document: 2p

Deadlines:
• for full points: 09.11
• for any points: 21.11

26.9.2023 ssss 32

26.9.2023 ssss 33

Behavior
• ORIG publishes 3 messages to

topic my.o :
MSG_1
(Wait for 3 seconds)
MSG_2
(Wait for 3 seconds)
MSG_3

• IMED
Every time IMED receives a message from
topic my.o:
IMED waits for 1 second
After waiting, IMED publishes “Got {received
message}” without quotes to topic my.i
For example:

Got MSG_1

• OBSE
On any message from any of the topics:
builds a string “{timestamp} Topic {topic}: {message}”
without quotes
{timestamp} must be in the format YYYY-MM-
DDThh:mm:ss.sssZ (ISO 8601)
Time zone is UTC
{topic} is the topic that delivered the message
{message} is the message body
example:
2020-10-01T06:35:01.373Z Topic my.o: MSG_1

writes the string into a file in a Docker volume
If OBSE is run multiple times, the file must be
deleted/cleared on startup

• HTTPSERV
When requested, returns content of the file created by
OBSE (Nothing else)
Port: 8080
Example:
2020-10-01T06:35:01.373Z Topic my.o: MSG_1
2020-10-01T06:35:01.973Z Topic my.i: Got MSG_1

ssss 26.9.2023 34

Returning

Source code of your application
Docker Compose file (YAML)
All Docker files
Any other files required to build and run the system
A document in which you cover at least

• Perceived (in your mind) benefits of the topic-based
communication compared to request-response (HTTP)

• Your main learnings

26.9.2023 | 35

Testing

$ git clone <the git url you gave>
$ docker-compose build –-no-cache
$ docker-compose up -d
(Wait for at most 30 seconds...)
$ curl localhost:8080
<output should follow the requirements>
$ docker-compose down

26.9.2023 | 36

