
Lecture 6: continuous
deployment – part 1

Continuous Delivery and
Deployment

What is DevOps
(there are several definitions)

• Lucy Lwakatare:
• DevOps is a concept that embodies a cultural and mindset change that is

substantiated with a set of practices to encourage cross-disciplinary
collaboration between software development and IT operations within a
software company. The main purpose for the collaboration is to enable the
fast release of quality software changes while simultaneously operating
resilient systems.

• From a socio-technical perspective, DevOps practices are focused on the
automation practices of software deployment and infrastructure
management, specifically automation of configuration management and
monitoring.

17.10.2023 ssss 3

Continuous
Delivery

Relation to our
content

17.10.2023 ssss 4

Feedback in traditional development
(Case: Internet-based service; based on slide by Antti Tirilä)

05.03.2018 5

Business Develop QA
(test)

Installation Use

3 months 1 month 1 month

With Agile
iterations

2 weeks 1 week 2 weeks

Feedback in traditional development
(Case: Internet-based service; based on slide by Antti Tirilä)

05.03.2018 6

Business Develop QA
(test)

Installation Use

Continuous integration

05.03.2018 7

”Build”

”Build”

”Build”

Integration

Feedback

Test

Test

Test

Test

Feedback

Continuous deployment

05.03.2018 8

”Build”

”Build”

”Build”

Integration

Feedback

Test

Test

Test

Test

Feedback

Use€€
Feedback

Continuous Deployment

Continuous Delivery

Continuous X

05.03.2018 9

Continuous Integration

Build and test
automation

Automated e2e tests,
delivery of deployable
software (at any time)

Automatic deployment
to production.

05.03.2018 10

From Forrester report: Continuous Delivery: A Maturity Assessment Model: Building
Competitive Advantage With Software Through A Continuous Delivery Process, 2013

Google trends after that 2003

17.10.2023 ssss 11

Continuous delivery and deployment
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-
continuous-deployment)

05.03.2018 12

Main principles
(https://continuousdelivery.com/principles/)

• Build quality in
•Work in small batches
• Computers perform repetitive tasks, people solve problems
• Relentlessly pursue continuous improvement
• Everyone is responsible

Sound familiar from somewhere?

CI – essential practices
(according to Humbley and Farley)

• Don’t check in on a broken code
• Always run all commits tests locally before committing, or get your CI server

to do it for you
• Wait for commit tests to pass before moving on
• Never go home on a broken build
• Always be prepared to revert to the previous revisions
• Time-box fixing before reverting
• Don’t comment out failing tests
• Take responsible for all breakages that result from your changes
• Test-driven development

17.10.2023 14

Deployment essential pract.
(according to Humbley and Farley)

• Only build your binaries once
• Deploy the same way to every environment
• Smoke-test your deployments
• Deploy to copy of production
• Each change should propagate through the pipeline instantly
• If any part of pipeline fails, stop the line

17.10.2023 15

Reported HP case-study
(https://continuousdelivery.com/evidence-case-studies/)

They had three high-level goals:
• Create a single platform to support all devices
• Increase quality and reduce the amount of stabilization required prior to release
• Reduce the amount of time spent on planning
A key element in achieving these goals was implementing continuous delivery, with
a particular focus on:
• The practice of continuous integration
• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a virtual platform
• Reproduction of test failures on developer workstations

https://continuousdelivery.com/foundations/configuration-management/
https://continuousdelivery.com/foundations/test-automation/

Reported HP case-study
(https://continuousdelivery.com/evidence-case-studies/)

They had three high-level goals:
• Create a single platform to support all devices
• Increase quality and reduce the amount of stabilization required prior to release
• Reduce the amount of time spent on planning
A key element in achieving these goals was implementing continuous delivery, with
a particular focus on:
• The practice of continuous integration
• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a virtual platform
• Reproduction of test failures on developer workstations

Results:
• Overall development costs were reduced by ~40%.
• Programs under development increased by ~140%.
• Development costs per program went down 78%.
• Resources driving innovation increased eightfold.

https://continuousdelivery.com/foundations/configuration-management/
https://continuousdelivery.com/foundations/test-automation/

Let’s speculate the contribution of each

They had three high-level goals:
• Create a single platform to support all devices
• Increase quality and reduce the amount of stabilization required prior to release
• Reduce the amount of time spent on planning
A key element in achieving these goals was implementing continuous delivery, with
a particular focus on:
• The practice of continuous integration
• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a virtual platform
• Reproduction of test failures on developer workstations

https://continuousdelivery.com/foundations/configuration-management/
https://continuousdelivery.com/foundations/test-automation/

CD: Some technical material

17.10.2023 19

Deployment pipeline (a possible example)

17.10.2023 20

Hypothesis of possible approaches

17.10.2023 ssss 21

Pipeline

(V)M (V)M (V)M

UPDATE

Pipeline

(V)M (V)M New
VM

UPDATE

Pipeline

contai
ner

contai
ner

contai
ner

Create
image

image
image

What does it really take to run CD?

14.3.2016 TIE-2210x/Kari Systä 22

Integration Test

”Build”

”Build”

”Build”

Test

Test

Test

Use

Set-up and
operate

Test
automation

VM

VM VM

VM

Set-up and
operate

Estimate &
manage costs

Artifact repository

17.10.2023 23

Couple of Finnish studies

Lwakatare , Kilamo , Karvonen, Sauvola , Heikkilä, Itkonen,
Kuvaja, Mikkonen, Oivo & Lassenius:
DevOps in practice : A multiple case study of five companies,
Information and Software Technology , vol. 114 , pp. 217-230 .
https://doi.org/10.1016/j.infsof.2019.06.010

Perceived benefits

• Improved delivery speed of software changes Improved speed in the
development and deployment of software changes to production environment.

• Improved productivity in operations work. Decreased communication problems,
bureaucracy, waiting overhead due to removal of manual deployment hand-offs
and organisational boundaries; Lowered human error in deployment due to
automation and making explicit knowledge of operation-related tasks to software
development

• Improvements in quality. Increased confidence in deployments and reduction of
deployment risk and stress; Improved code quality; Improved product value to
customer resulting from production feedback about users and usage.

• Improvements in organisational-wide culture and mind-set. Enrichment and
wider dissemination of DevOps in the company through discussions and
dedicated training groups ‘communities of practice’

00

Perceived challenges

• Insufficiencies in infrastructure automation
• High demand for skills and knowledge
• Project and resource constraints
• Difficulties in monitoring, especially for microservice-based

applications and in determining useful metrics
• Difficulties in determining a right balance between the speed

of new functionality and quality.

Summary of the findings

(i) software development team attaining ownership and responsibility
to deploy software changes in production is crucial in DevOps.
(ii) toolchain usage and support in deployment pipeline activities
accelerates the delivery of software changes, bug fixes and handling of
production incidents. (ii) the delivery speed to production is affected by
context factors, such as manual approvals by the product owner
(iii) steep learning curve for new skills is experienced by both software

developers and operations staff, who also have to cope with working
under pressure.

Leppänen, Mäkinen, Pagels, Eloranta, Itkonen, Mäntylä, Männistö
The highways and country roads to continuous deployment,
IEEE Software, vol. 32, no. 2, pp. 64-72, Mar.-Apr. 2015.
doi: 10.1109/MS.2015.50

” Interviews with 15 information and communications
technology companies revealed the benefits of
and obstacles to continuous deployment. Despite
understanding the benefits, none of the companies
adopted a fully automatic deployment pipeline.”

State of the practice (2014)

• Only one company had completely automatic pipeline to deployable
product; no one really to production
• Fastest time from code change to production

• 5min – 4 weeks
(for web application developers longest time was 1 day)

• Cycle-time to potentially deployable software
• 20min – 1 months

• Full deployment cycle
• 1 hour – 1.5 years

Perceived benefits 1/2

• Faster feedback
• to development
• From users to decision making

• More Frequent Releases
• ” less waste because the features weren’t waiting in the development

pipeline to be released.”

• Improved Quality and Productivity
• robust automated deployment with a comprehensive test suite
• reduced scope for each release

Perceived benefits 2/2

• Improved Customer Satisfaction
• new product features provided better customer service
• (reported by 5 out of 15 interviewed organisations)

• Effort Savings
• three interviewees reported
• automation saved time

• Closer Connection between Development and Operations
• only one reported !

Obstacles 1/2

• Resistance to Change
• Organization culture, management, social relations, …

• Customer Preferences
• Might be reluctant to deal with more frequent releases

• Domain Constraints
• Telecom, Medical, Embedded, …
• Distribution channels

• Developer Trust and Confidence
• Proficiency and knowledge of typical continuous-deployment practices
• Reliable automated testing (… even browser-bases apps)

About resistance

Obstacles 2/2

• Legacy Code Considerations
• Quality has decreased over time
• Not be designed to be automatically tested

• Duration, Size, and Structure
• Effort to create the pipe-line and tests is big
• In big projects the execution of tests will also take time

• Different Development and Production Environments
• Especially ”embedded”

• Manual and Nonfunctional Testing

