COMP.SE.140
Cl, CD, DevOps

Kari Systa, 31.10.2023

.

=[] Tampereen yliopisto

Tampere University W h at | S D eV O p S

(there are several definitions)

* Lucy Lwakatare:

30.10.2023

DevOps is a concept that embodies a cultural and mindset change that is
substantiated with a set of practices to encourage cross-disciplinary
collaboration between software development and IT operations within a
software company. The main purpose for the collaboration is to enable the

fast release of quality software changes while simultaneously operating
resilient systemes.

From a socio-technice ices are focused on the
automation practices o frastructure

management, specifically Continuous n management and
monitoring. Delivery

SSSS

Cr Tampereen yliopisto COﬂtlﬂUOUS deployment

Tampere University
\ Y
&

Feedback Feedback /

Integration Test

05.03.2018

.

=[] Tampereen yliopisto
Tampere University

Perceived benefits

* Improved delivery speed of software changes Improved speed in the
development and deployment of software changes to production environment.

* Improved productivity in operations work. Decreased[communication problems,|
bureaucracy,‘waiting overhead due to removal of manuatdeptoyment hand-otis
and organisa ' Lowered human error]in deployment due to
automation and making|explicit knowledge of operation-related|tasks to software
development

* Improvements in quality. Increased confidence i deployments and reduction of
deployment|risk and stress;|Improved|code quality;|Improved|product valuejto
customer resulting rrom production feedback about users and Usage.

* Improvements in organisational-wide culture and mind-set. Enrichment and

widerl dissemination of DevOpslin the company through discussions and
dedicated training groups communities of practice’

(.

- Tampereen yliopisto
Tampere University

Simplified pipeline

Operatio
n

(.

- Tampereen yliopisto
Tampere University

Simplified pipeline

Operatio
n

(.

- Tampereen yliopisto
Tampere University

Simplified pipeline

Operatio
n

(.

- Tampereen yliopisto
Tampere University

Simplified pipeline

Operatio
n

.

=[] Tampereen yliopisto
Tampere University

Testing

e Automate, automate, automate

* Know any tools?

Support
coding

Business
AUTOMATED LIS
functi | Showcase
(functiona Usability testing
acceptance tests) Exploratory testing
Unit tests

Integration tests
System tests

AUTOMATED

Nonfunctonal
acceptance tests

MANUAL/AUTOM.

Technology

Critique
project

.

=[] Tampereen yliopisto
Tampere University

?

Should our
project have
Aor B?

05.03.2018

Implement a
way to collect
statistics

A/B Testing

R —

Implement B

Implement A

Compare

ﬁ

)

Usage Usage
statistics | | statistics
Deploy B

Deploy A

10

C D Tampereen yliopisto

Tampere Univrsity Data-driven software development

Planning of the data collection
Deployment of data collection
Monitoring of the applications
Picking up the relevant data

a0~

Pre-processing — filtering and
formatting — the data

6. Sending and/or saving
the data

7. Cleaning and unification
of the data

8. Storing the data
9. Visualizations and analysis

10. Decision making

30.10.2023

Business
strategy and goals

generate

Feature
backlog

Strategic product goal)

[Feature: expected behavior

Expected
behavior

Gap
analysis

INo gap

Develop
hypothesis

abandon

Sampo Suonsyrja@SEKE2016 11

.

[T] Tampereen yliopisto
Tampere University

DevOps and critical systems

.

=[] Tampereen yliopisto
Tampere University

Some claims from

https://www.beyondtrust.com/blog/entry/devops-security-best-practices

* DevOps’ focus on speed often leaves security teams flat-footed and
reactive

* Cultural resistance to security: There’s a widespread perception that
introducing security will slow or derail the development process.

* DevOps and cloud environments: The typical DevOps environment relies
on cloud deployments, thereby sharing many cloud security
considerations. DevOps teams often leverage new, open-source or
Immature tools

* Containers and other tools carry their own risks: Is container a powerful
black box?

. Lanrrkignaged secrets and poor privileged access controls open dangerous
ackdoors

https://bt.bomgar.com/blog/cloud-security-best-practices/
https://bt.bomgar.com/blog/cloud-security-best-practices/

C [T] Tampereen yliopisto D e VS e C O p S

Tampere University

* DevSecOps Is seen as a hecessary expansion to DevOps,
where the purpose is to integrate security controls and
processes into the DevOps software development cycle
and that it is done by promoting the collaboration
between security teams, development teams and
operations teams.

* H. Myrbakken, R. Colomo-Palacios, DevSecOps: A Multivocal Literature Review., in: A. Mas, A.
Mesquida, R. O'Connor, T. Rout, A. Dorling (eds) Software Process Improvement and Capability
Determination. SPICE 2017. Communications in Computer and Information Science, vol 770. Springer,
Cham, 2017, pp. 17-20. https://doi.org/10.1007/978-3-319-67383-7_2.

.

=[] Tampereen yliopisto

Tampere University P ri n C i p I e S

* Culture: DevSecOps means to include collaboration with the security team
as well as promote a culture where operations and development also work
on integrating security in their work.

e Automation: DevSecOps promotes a focus on automating security, to be
able to keep up with the speed and scale achieved by DevOps. The aim
should be 100% automation of security controls, where the controls can be
deployed and managed without manual interference.

* Measurement: DevSecOps promotes the use and development of metrics
that track threats and vulnerabilities throughout the software development
process

e Sharing: DevSecOps promotes the inclusion of the security team in the
sharing promoted in a DevOps environment.

 Shift security to the left: This means that security teams are involved from
the very first planning step and is part of planning every iteration of the
development cycle

C 7] Tampereen yliopisto D e VS eC O p S

Tampere University

the mindset that "everyone is responsible for security”

Manifesto

* Leaning in over Always Saying “No”

* Data & Security Science over Fear, Uncertainty and Doubt

* Open Contribution & Collaboration over Security-Only Requirements

* Consumable Security Services with APIs over Mandated Security Controls & Paperwork
* Business Driven Security Scores over Rubber Stamp Security

* Red & Blue Team Exploit Testing over Relying on Scans & Theoretical Vulnerabilities

* 24x7 Proactive Security Monitoring over Reacting after being Informed of an Incident

* Shared Threat Intelligence over Keeping Info to Ourselves

 Compliance Operations over Clipboards & Checklists

.

=[] Tampereen yliopisto

Tampere University P ra Ct i C e S

* Threat modeling and risk assessments:
 Continuous testing:

* Monitoring and logging:

« Security as code:

* Red-Team and security drills:

30.10.2023

17

.

=[] Tampereen yliopisto
Tampere University

Some practical tips from

https://www.redhat.com/en/topics/devops/what-is-devsecops

* Standardize and automate the environment. Each service should have the
least privilege possible to minimize unauthorized connections and access.

* Centralize user identity and access control capabilities. Tight access control
and centralized authentication mechanisms are essential for securing
microservices, since authentication is initiated at multiple points.

* Isolate containers running microservices from each other and the network.
This includes both in transit and at rest data, since both can represent high-
value targets for attackers.

* Encrypt data between apps and services. A container orchestration platform
with integrated security features helps minimize the chance of unauthorized
access.

* Introduce secure APl gateways. Secure APIs increase authorization and
r(])cutmg I\</|5|b|I|ty. By reducing exposed APIs, organizations can reduce surfaces
of attacks.

.

=[] Tampereen yliopisto
Tampere University

Some practical tips from

https://www.redhat.com/en/topics/devops/what-is-devsecops

* Integrate security scanners for containers. This should be part of the process for

adding containers to the registry.

* Automate security testing in the Cl process. This includes running security static

analysis tools as part of builds, as well as scanning any pre-built container images for
known security vulnerabilities as they are pulled into the build pipeline.

Add automated tests for security capabilities into the acceptance test process.
Automate input validation tests, as well as verification authentication and
authorization features.

Automate security updates, such as patches for known vulnerabilities. Do this via
the DevOps pipeline. It should eliminate the need for admins to log into production
systems, while creating a documented and traceable change log.

Automate system and service configuration management capabilities. This allows
for compliance with security policies and the elimination of manual errors. Audit
and remediation should be automated as well.

'I'J Tampere University

Regulated software development

Example: medical systems

'D Tampere University

Examples of requirements/standards

* general requirements for health software product safety (IEC 82304-1),
* software life cycle process (IEC 62304),

* risk management process (ISO 14971),

» usability engineering (IEC 62366-1),

* quality management system requirements (ISO 13485), and

* security activities in the product life cycle (IEC 81001-5-1)

These slow down process lead time
DevOps is about making it faster

30.10.2023 | 21

v v

-D Tampere UniverSity Source lE‘rem\\I/(iel'It(;r?nn":leer?tt Staging Environment QA Environment 23
Regggi(taory (optonal)
A A A
Checkin éUsed by ' Used by ' Used by
91 review (;.2 ' &;;r%\;e (3‘4 | Approve s
oo [)] g [e
_ " ineaton roron o | vl {Manual systom
Toivakka, H., Granlund, T., Poranen, T., Zhang, Z. (2021). e | voreaton | | eang | s
Towards RegOps: A DevOps Pipeline for Medical Device | sutccate | :—é&-,;,-&;i;v;-; ot Spom sy
Software. Proc od Product-Focused Software Process B T Ty LT
H ' analysis | iMerge approval ; iCapacity testing ! ST
Improvement. PROFES 2021. Lecture Notes in Computer Ty e SR | Residualri
Science(), vol 13126. Springer, Cham. { L Mo] | magron | P
et o it At I S SOkt ' Archive ‘
https://doi.org/10.1007/978-3-030-91452-3 20 ;'_‘_‘_‘_‘_‘_é%;_‘_‘_‘_‘_‘_‘; L Sonen |
R - . TN
;dGenerati?rl_of . Vahfiatlon_'
: ocumenalon: . &_ ______
Release
. approval
Tﬁggers Triggers Trigger;
Geptoyment Geployment Bt

G3 Deployment Pipeline

Deploys

Atifact i P Depoy i Deploy i Verify |
frac <— | Pullartifacts —>» software —>» L . ’ N
Repository Pulls H - artifacts 1~ idocumentation : " installation
Production Deployment
Notation
Production Environment | Staging Deployment
:> Flow of software lifecycle Staging Slot] 7
e L Production Environment Swap Staging and <
—> Flow of pipeline activities Production Slot h Production Slots

Production Configuration

--------- » Environment dependency

DESIGN &
DEVELOPMENT
REQUIREMENTS
REVIEW (7.3.6)

RELEASE:

Development planning (5.1)

Release & Regulatory
Compliance Cycle

ITERATION:
Development planning (5.1)

SYSTEM TESTING REQUIREMENTS ANALYSIS
(5.7) (5.2)

lteration & Software R

Integration & Integration

Development Cycle e 5

REGULATORY APPROVAL

& SOFTWARE RELEASE (5.8)

INTEGRATION & ARCHITECTURAL DESIGN
INTEGRATION TESTING (5.6) (5.3)

DESIGN &
DEVELOPMENT
OUTPUT VALIDATION
(7.3.7)

UNIT IMPLEMENTATION &
\ VERIFICATION (5.5) DETAILED DESIGN (5.4)

DESIGN &
DEVELOPMENT OUTPUT
REVIEW
(7.3.4)
RELEASE:

System & Regression Testing

6.7 150 IEC 62304
13485
DESIGN & IEC 62304

DEVELOPMENT
VERIFICATION
(7.3.6)

v v

Development
Source Environment Staging Environment QA Environment
Code (optional)
2pository
A A .
1 Used by i Used by i Used by
Ready for : Approve/ : :
review Merge Approve

G1 G2 G4 G5
»ntinuous :> Change Review and :> Integration I:|,> Manufacturer
tegration Approval Verification Release Approval
tegration ! Review and : ¢ Manual : { Manual system
testing : ! Verification ' integration | 1 testing :
"'; """" S ' i\ testing [N I % """"
atic code ! ._......L ,------;-------\' 1 System testing :
nalysis ! SOUP review | System testing ; ;evaluation and
-—-{ ——————— ‘"""I l ------ ' i verification
JP analysis ; iMerge approval : ‘Capacity testing! ST
; Lo AR N e 1 Residual risk !
_________ . L ¢ ' analysis '
Inerability T T gmmmmmmT AR : N e g
inalysis | i Merge ; Integration 3\ v
.......... ! + approval ' e s

% --------------- ' ! Archive
R softvare |
_B_li"d ______ ' . product !
1eration of | ! Validation
Jmentation | '"‘""; ““““
---{ ------ N i Release
ish artifacts ! + approval

Tn'gqers Triggers Triggers
Publish Staging QA production
deployment deployment deployment
) 4 \4) 4
G3 Deployment Pipeline

, e ey L e T
Artifact Pull artifacts —>» software —>» Deploy N Ve"f}{ —
3pository Pulls L ' artifacts : ;\documentatlon’; L installation)

rerereNce sTaNDARDS: RegOps — diving into the dilemma of agile

software development in regulated industry
https://www.solita.fi/blogs/regops-diving-into-
the-dilemma-of-agile-software-development-in-
reculated-industrv/

Deploys

'D Tampere University

Material

« Laukkarinen, T., Kuusinen, K., Mikkonen, T.: DevOps in Regulated Software Development: Case Medical
Devices. In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE-NIER), pp. 15-18.
IEEE (2017)

« Laukkarinen, T., Kuusinen, K., Mikkonen, T.: Regulated software meets DevOps. Information and Software
Technology, vol. 97, pp. 176—178. (2018)

 Toivakka, H., Granlund, T., Poranen, T., Zhang, Z. (2021). Towards RegOps: A DevOps Pipeline for Medical
Device Software. In: Ardito, L., Jedlitschka, A., Morisio, M., Torchiano, M. (eds) Product-Focused Software
Process Improvement. PROFES 2021. Lecture Notes in Computer Science(), vol 13126. Springer, Cham.
https://doi.org/10.1007/978-3-030-91452-3 20

30.10.2023 | 24

yemeciiesty— Site reliability engineer
https://aws.amazon.com/what-is/sre/

* Application monitoring

*service-level agreements (SLASs), service-level indicators (SLIs),
and service-level objectives (SLOs)

* Gradual change implementation

* SRE practices encourage the release of frequent but small
changes to maintain system reliability

* Automation for reliability improvement

* policies and processes that embed reliability principles in every
step of the delivery pipeline

* SRE is the practical implementation of DevOps.

30.10.2023 | 25

Cr)rmpere sy NP S :/IWWW.getambassador.io/resources/rise-
of-cloud-native-engineering-organizations

How Teams
Measure Success

How Teams
are Organized

Business
Application Application Application Application KPIs
Development Development Development ° Development
Team Team Team Team

Platform Engineering Team

Service
Level
Objectives

Site Reliability Engineering Team

Example
DORA metrics for DevOps

'D Tampere University

DevOps

* A modern development paradigm for cloud applications

e Cornerstones

« Continuous deployment: new features are delivered to end-
users as soon as possible

* Close collaboration between development and operations —
often even the same team is responsible

* Empasis on quality — also to cope with the concerns raised by
the two previous

* Extensive use of automation

CI’ Tampere University n
’ DORA metric for DevOps

*Deployment Frequency
> X=1Y7?

*Lead Time for Changes
*Mean Time to Recovery

*Change Failure Rate

(_ .
D Tempere versty DORA metric for DevOps
Metric Explanaton

Refers to the frequency of successful software

Deployment Frequency '\ production.

Captures the time between a code change commit

Lead Time for Changes and its deployable state.

Measures the time between an interruption due to

Mean Time to Recovery deployment or system failure and full recovery.

Indicates how often a team’s changes or hotfixes

Change Failure Rate lead to failures after the code has been deployed.

xhttps://www.leanix.net/en/wiki/vsm/dora-metrics

