
Rest of Cloud Native
and project
07.11.2023

Kari Systä

6.11.2023 | 1

Course status

SISU signups 109
Plus signups 150
Docker/compose exercise 86
Communication exercise 69
Ansible exercise 9

6.11.2023 | 2

Function as a service/
serverless computing

Serverless computing
Baldini et all: Serverless Computing:

Current Trends and Open Problems, Research Advanges in Cloud Computing, Springer, 2017.

A cloud-native platform
for
• short-running, stateless computation
• event driven applications
which
• scale up and down instantly and automatically
and
• charge for actual usage and high granulatity

https://medium.com/@BoweiHan/an-introduction-to-serverless-
and-faas-functions-as-a-service-fb5cec0417b2

”… you can simply upload modular chunks of functionality into the cloud
that are executed independently.
Imagine the possibilities! Instead of scaling a monolithic REST server to
handle potential load, you can now split the server into a bunch of
functions which can be scaled automatically and independently.”

Function as a service?

API
gateway

Data storage

Function

Code

Access
control

Client

The difference

ssss 6.11.2023 8

uS uS

uSuS

FFFF

Running

IDLE

Claimed FaaS advantages

• Smaller for developer since infrastructure is handled by somebody else
=> more time for writing application code
• Inherently scalable
• No need to pay for idle resources

(temptation to miss-use)
• Available and fault tolerant
• No explicit multi-tenancy
• Forces modular business logic

Claimed FaaS disadvantages

• Decreased transparency
• Maybe challenging to debug
• Autoscaling of functions may lead to autoscaling of cost
• Keeping track of huge numbers of functions is tough
• Chaching of requests?

Microservices vs. Serverless/FaaS
(They are different – do not call serveless microservices)

• Microservice
• Small services running in their own process and communicating with

lightweight services
• Can be stateful

• Serverless / FaaS
• Short term execution triggered by a request, then closes down
• For stateless computing

Some comparison

Microservice Serverless / FaaS
Bug hunting Easier (but not easy) Difficult
Infrastructure code May be complex Minimal or even non-existent
Scaling Need to be implemented Automatic
Performance Good Possible cold-start issues
Running cost May include cost of idle time Pay only per use

Microfront-ends

Information about architectures
and implementation tricks on

previous years’ videos.

6.11.2023 | 14

7R’s of cloud Micration

Replace
with similar or

improved
but SaaS

Reuse
in the new SaaS

version

Refactor
towards cloud-

native
architecture

Replatform
by using cloud

services

Rehost
to a VM

RetireRetain

Nice video about microservices

• Netflix story (Mastering Chaos - A Netflix Guide to Microservices)
<https://www.youtube.com/watch?v=CZ3wIuvmHeM>

https://www.youtube.com/watch?v=CZ3wIuvmHeM

Stateful vs stateless computation
• If a service has an internal state it is difficult to

• Scale it
• Move it to other server or other hosting system
=> Stateless Services are subject to cloud-specific optimizations

• The internal state my be
• volatile or
• non-volatile
• ... in memory, file local to container,

• Serverless / FaaS

About the project

Kari Systä 19

Project
Develop
& test

Build Pack Deploy OperateVMS Test

DD.MM.YYYYKari Systä 20

Schedule

• The instructions disclosed: 07.11.2023
• Students can start by installing the gitlab-ci
• New versions to resolve ambiguous parts may be published later.

• Discussions in the lecture: 07.11.2023
• Students are asked to give clarification questions

• Latest submission if you want course to graded in 2023: 07.12.2023
• Latest submission to pass the course: 31.01.2024

DD.MM.YYYYKari Systä 21

Project includes
1. Install the pipeline infrastructure using gitlab-ci. This means that you should:

• Register your gitlab-runner to the new GitLab service
• Define the pipeline using .gitlab-ci.yml for the application you implemented for the

message-queue exercise. The result of the pipeline should be a running system, so the
containers should be started automatically. (In other words: “git push => the system is up
and running)

• Test the pipeline with the current version of the application.
2. Create, setup and test an automatic testing framework

• First, you need to select the testing tools. We do not require any specific tool, even your own
test scripts can be used.

• Create test to the existing functionality of the application (see “Application and its new
features” below)

3. Implement the changes and additional functionalities to the mesaaging exercise

DD.MM.YYYYKari Systä 22

The application

1. The system should run “forever” unless explicitly stopped. This means that services 2
should not stop sending after 20 rounds.

2. The system should have the following states:

3. The most notable new component is an API gateway service that provides the external
interface to the system. This service should be exposed from port 8083. The API gateway
should provide the following REST-like API
(See next slide)

DD.MM.YYYYKari Systä 23

API gateway
GET /messages
 Returns all message registered by the Monitor-service

Example response (part of):
• SND 1 2022-10-01T06:35:01.373Z 192.168.2.22:8000
SND 1 2022-10-01T06:35:01.373Z 192.168.2.22:8000 192.168.2.21:78390

PUT /state (payload “INIT”, “PAUSED”, “RUNNING”, “SHUTDOWN”)
PAUSED = Service 1 is not sending messages
RUNNING = Service 1 sends messages
If the new state is equal to previous nothing happens.

There are two special cases:

INIT = everything (except log information for /run-log and /messages) is set to the initial state and
Service starts sending again, and state is set to RUNNING
SHUTDOWN = all containers are stopped

GET /state
get the value of state

DD.MM.YYYYKari Systä 24

API gateway
GET /run-log
 Get information about state changes
 Example output:

2023-11-01T06.35:01.380Z: INIT->RUNNING
2023-11-01T06:40:01.373Z: RUNNING->PAUSED
2023-11-01T06:40:01.373Z: PAUSET->RUNNING

GET /message-log
 Forward the request to Monitor and return the result

GET /mqstatistic (optional) (in JSON)
Return core overall statistics (the five (5) most important in your mind) of the RabbitMQ, and in addition
for each queue return “message delivery rate”, “messages publishing rate”, “messages delivered recently”,
“message published lately. (For getting the information see https://www.rabbitmq.com/monitoring.html
)
Output should be syntactically correct and intuitive JSON document containing overall and per queue
statistics.

https://www.rabbitmq.com/monitoring.html

DD.MM.YYYYKari Systä 25

End report
1. Instructions for the teaching assistant

Implemented optional features
List of optional features implemented.
Instructions for examiner to test the system.
Pay attention to optional features.

2. Description of the CI/CD pipeline
Briefly document all steps:
Version management; use of branches etc
Building tools
Testing; tools and test cases
Packing
Deployment
Operating; monitoring

3. Example runs of the pipeline
Include some kind of log of both failing test
and passing.

4. Reflections
Main learnings and worst difficulties
Especially, if you think that something should
have been done differently, describe it here.
Amount effort (hours) used
Give your estimate

DD.MM.YYYYKari Systä 26

Grading
As already been communicated this project affects 40% of in the evaluation of the overall course.
For that 40% we use the following table
The system work according to requirements 0..20 %
The CI/CD pipeline is clean and complete 0..10 %
Implementation of optional features 0..25%
(each optional feature is worth of 5%)
Overall quality (clean code, good comments, ….) 0..5%
Quality of the end report 0..5% (+ up to 5% compensation of a

good analysis of your solution and
description of a better way to

implement.)
Note: optional points can compensate problems elsewhere, but the total sum is capped at 50%.
That means that max 10% can be used to compensate lost points in exercises and exam.

Gitlab CI
https://docs.gitlab.com/ce/ci/

Gitlab

Gitlab runnerGitlab runnerGitlab runnerGitlab runnerGitlab runner

.gitlab-ci.yml

http://...../user_sessions/callback

Your version management with GitLab CI

Code .gitlab-ci.yml

course-gitlab Gitlab

Runner

Types of runners

Shared Runners
• These runners are useful for jobs multiple projects which have similar

requirements. Instead of using multiple runners for many projects,
you can use a single or a small number of Runners to handle multiple
projects which will be easy to maintain and update.

Specific Runners
• These runners are useful to deploy a certain project, if jobs have

certain requirements or specific demand for the projects. Specific
runners use FIFO (First In First Out) process for organizing the data
with first-come first-served basis.

How to install .gitlab-ci.yml?

git add .gitlab-ci.yml
git commit -m "Add .gitlab-ci.yml”
git push origin master

