
Large Scale Software Design

Introduction

Slides: Hannu-Matti Järvinen, David Hästbacka, …

| 1

Introduction
• What is a software architecture?

• Implement using P2P topology?
• Use agile methods in development
• Use a particular programming language as implementation technology
• Use open source library OpenSSL
• Publish using GPL license

| 2

What constitutes software architecture
• Basic structure of the software (components of the software)

• Relations between software components

• Relations between the software and its environment

• The principles guiding the design and evolution the software

| 3

Additional highlights on SW architecture
• Architecture is not a static structure - It contains also
functionalities and dynamic structures of the software.

• Architecture is not only the structure and their relations, but it
gives also reasons and justifications for them.

• There may be rules and principles how to develop systems
using a given architecture.

| 4

Architecture definitions in standards
• The fundamental organization of a system embodied in its
components, their relationships to each other and to the
environment, and the principles guiding its design and evolution.
(IEEE Standard 1471-2000)

• The fundamental conception of a system in its environment
embodied in elements, their relationships to each other and to
the environment, and the principles guiding its design and
evolution. (ISO/IEC 42010)

| 5

Other definitions
• Barry Boehm’s definition on what software system architecture comprises:

• a collection of software and system components, connections, and constraints
• a collection of system requirements
• a rationale which demonstrates that the components, connections, and constraints

define a system that, if implemented, would satisfy the collection of system
requirements

• D'Souza & Wills Architecture as a design principle:
"Architecture is the set of design decisions about any system that keeps its implementers
and maintainers from exercising needless creativity."

• Architecture = the law of the system
• Given fundamental solutions, How to use given technology, How to use given data

structures, How to use design patterns, How components communicate with each
other, Rules to handle exceptions, Etc.

| 6

Does every software have an architecture
• Even though every system has an architecture it may not be
explicit and it does not necessarily follow the architecture known

• An architecture can exist independently of its description or
specification, which raises the importance of architecture
documentation and architecture reconstruction.

| 7

Two different architecture views
• Defined architecture

• Definition of the system, specification, will of the designer
• Architecture of a specified system

• Property of the system, defined by the system
• Problems:

• Only in ideal world these are the same thing
• It is seldom defined which one is meant
• Defined architecture not documented
• Architecture of an implementation is hard to see

| 8

Things affecting the decisions of an
architect

Architect

Requirements: “The system should have
response time under 1 s when
there are 10000 users logged in the service.

Resources: “I have two Scrum teams”

Experience: “I have had bad
experiences using Struts”

Personal preference or company
policy: “I prefer to use open source
components over commercial ones”

Business goals: “Company should take
technology X in use within two years.”

Time-to-market: “Product should be
released next week, I just do this quick-n-
dirty solution”..and many other concerns.

| 9

14.1.2024 10

Software architecture and quality
requirements
The architecture is defined mostly by its quality requirements, not by functional
requirements.
Architecture is a way to take into account quality requirements in software development
process.
Here quality refers to the quality how the systems performs its logical functions
Eg. Response time with normal load is 5 ms, components should be exchangeable, …

14.1.2024 11

Quality requirements
Any system can be implemented by any ”architecture”, if only functionality is concerned.
From the point of view of logical functionality, the architecture is not very significant.

14.1.2024 12

Why is the software architecture
important 1?
It gives abstraction level for solving the main problems associated with the development
of the system.
It is the central mean of communication during the lifespan of the software: it defines and
names the main components, solutions and concepts.

14.1.2024 13

Why is the software architecture
important 2?
Architecture sets limits and eases (or makes possible) to build the system, test it,
maintain it and reuse.
The first representation of the system that can be analysed: the system can be ”tested”
before its implementation.

Pause for a second...
What consequences can result from bad architectural decisions?

| 14

15

Consequences of failed architecture
The system can’t be implemented
The system is not finished in time
The system does not scale
The system is powerless
The system is hard to test and maintain
The system can’t be reused
The system can’t be moved to another environment

16

Reasons for a failed architecture
Bad communication
Essential requirements have been neglected
The architect is inexperienced or weak-willed
Development process does not support the architecture
The architect does not know the target subject
Others?

17

Software architecture and software
engineering process
The next section ties the software architecture design to software engineering process

Developing the architecture

18

Key requirements on architecture point of view

Tentative
Architecture

Requirements
analysis

Tentative
architecture

design

Considering
quality

requirements

Main
functional

requirements

Quality
requirements

Architecture

All taken
care

not
OK

Secondary
functional

requirements

Limitations

OK

Applying general
patterns or
solutions

Architecture
refinement

Environmental
requirements

Architecture
evaluation

Incremental, agile:
Smallest implementable
architecture -> implementation

Detailed
design

19

Main requirements affecting the
architecture 1

Main functional requirements (what to do)
• Often the starting point for designing the architecture

Quality requirements (how is it done)
• Typically great influence on the architecture (non-functional requirements)

20

Main requirements affecting the
architecture 2

Environmental requirements
• The development environment

•Can it be done by the available tools
•Distributed development?

• The execution environment of the system
•Devices of an embedded system (differ from development
environment)

Limitations
• E.g. the used technology

Conflicting quality requirements

21

Customer
Management

Costs,
Resources

Marketing

Amount of properties,
Quickly available,

compatibility

Performance, reliablity,
usability

Maintenance

Adaptability,
testability

Price, stability,
supply

Architect

End user

22

Architecture evaluation
Many of the software quality properties could be deduced from the architecture
description

• e.g. strict tier architecture -> performance problems
Architecture evaluation = refinement of quality requirements + evaluation against the
refined requirements (e.g. ATAM)
Evaluation of the architecture is testing the software using its first precise description

Development of architecture

23

Making architecture up-front

24

…
Sprint

Backlog

Product
Backlog

Sprint
Backlog

Potentially
shippable
product

increment

Analysis

Sprint
Backlog

Delivered
product

Potentially
shippable
product

increment

Sprint

Sprint

Sprint

…
Sprint retrospective
Sprint review

2-4 weeks

2-4 weeks

Architecture
design

Sprint 0

25

…
Sprint

Backlog

Product
Backlog

Sprint
0

Architecture,
development

environment, etc..

Analysis

Sprint
Backlog

Delivered
product

Potentially
shippable
product

increment

Sprint

Sprint

Sprint

…
Sprint retrospective
Sprint review

2-4 weeks

2-4 weeks

Architecture in sprints

26

…
Sprint

Backlog

Product
Backlog

Sprint
Backlog

Potentially
shippable
product

increment

Analysis

Sprint
Backlog

Delivered
product

Potentially
shippable
product

increment

Sprint

Sprint

Architecture
design

…Sprint retrospective
Sprint review

2-4 weeks

2-4 weeks

Sprint

Architecture
design

Architecture
design

Separate architecture team

27

…
Sprint

Backlog

Product
Backlog

Sprint
Backlog

Potentially
shippable
product

increment

Analysis

Sprint
Backlog

Delivered
product

Potentially
shippable
product

increment

Sprint

Sprint

Sprint

…
Sprint retrospective
Sprint review

2-4 weeks

2-4 weeks

Architecture
teamXOR

28

Requirements
Essential requirements are normally prioritised

• Typically one or two quality properties dominate the architecture.
Preserving connection between architecture design and requirements is essential

• How the system fulfils especially quality requirements.
Requirements are changing during the system’s lifespan

• Walking on water and developing software from specifications are easy
tasks – when both are frozen (E. Bevard)

Software architecture and organisation

• Conway’s law: the structure of the architecture is the structure of
the organisation

29

group

person person

subsystem

component component

division system

30

Software partitioning
Can be based on:

• Functionality
• Generality
• Distribution
• Sensitivity to change
• Interest
• Concern
• …

Cross-cutting concerns

31

Koodi

Loki

Turvallisuus

Sessiot

Log

Security

Sessions

Code

Log

Security

Sessions

Log

Security

Koodi
Code

Aspects

32

Sessiot
Koodi

Log

Security

Sessions

Code
Turvallisuus
Log

Koodi
Code

33

Architecture of the implementation
platform

Implementation platform often enforces a given architecture for applications.
The application is built on this architecture.
Main question of application development is how to implement the requirements on
the platform
Example: How to implement on

• J2EE
• .NET
• QT
• …
• Internet communication protocol, P2P network protocol, blockchains, …

34

Towards architecture-level
implementation tools

Implementation tools:
• Variables
• Procedures and functions
• Classes
• Components
• Platforms
• Ecosystems

Programming language

Software architecture

35

Example of distributed software
components

36

Example connecting software systems
across ecosystems

37

Requirements set for the software
architecture

When the software architecture is part of the description of the implementation tools,
it has to be:

• Generic: suitable for many applications
• Understandable by a regular programmer
• Described precisely and comprehensively
• Described on the view of the application programmer.

38

Conclusions
Description of a software enables mastering of the system during its lifespan.
There is a solid connection between software architecture and the quality of the
software: great part of the architecture is supporting quality properties.
Software development has become architecture-centric

• Using given technology requires understanding of their architecture

