
Large Scale Software Design
Architecture evaluation

ATAM, DCAR
Hannu-Matti Järvinen, David Hästbacka

Spring 2024

Evaluating software architectures
• Introduction
• ATAM method
• Example
• Practical experiences and problems
• DCAR
• Conclusions

15.3.2024 3

Designing architecture during development
process

15.3.20244

Key requirements on architecture point of view

Tentative
Architecture

Tentative
architecture

design

Considering
quality

requirements

Main
functional

requirements

Quality
requirements

Architecture

All taken
care

not
OK

Secondary
functional

requirements

Limitations

OK
Architecture
refinement

Environmental
requirements

Architecture
evaluation

Detailed
design

Applying general
patterns or
solutions

Requirements
analysis

Architecture and quality requirements
• Here, quality means the quality the system performs its logical functions, not correctness.
• Software architecture is a way to fulfil quality requirements of the system, i.e. architecture

defines how quality requirements are fulfilled.
• Architecture description has to include all the information needed to decide if the quality

requirement is met or not.
• Architecture is (normally) assessed against quality requirements.

15.3.2024 5

What is evaluation of software architecture?
• Evaluation of a software architecture refers to an activity that can be used to draw

conclusions about how well a particular software architecture supports the implementation
of the requirements of the system in question.

15.3.2024 6

Why software architectures need evaluation?
• Architecture is the first precise description of the system.
• The evaluation confirms good solutions and draws early attention to potential problems.
• The evaluation will help to better understand the system.

15.3.2024 7

Other possible benefits
• Identification of development trends and potential development and the risk areas
• Software reform, identifying the main reform targets, and reviewing decisions.
• Opportunities to expand its operations into a new sector, the assessment of the necessary

changes.
• The evaluation can be used to ensure the quality software made by others (eg.

subcontracting).
• Recognition and refinement of quality requirements that direct the design.
• Recognition and documentation of architecture solutions and connecting them to the

quality requirements.
• Improvement of architectural documentation
• Increasing communication

15.3.2024 8

When to evaluate?
• On the basis of the first of (alternative) drafts (preliminary architectural document).
• After the architectural design, prior to the staring of implementation (system / subsystem

architectural document).
• Existing system (eg. Renewing the old system)

• Need for refactoring when problems are found

15.3.2024 9

Architectural knowledge

15.3.202410

Tang et al 2009

Categories of architectural knowledge

15.3.202411

Farenhorst, de Boer 2009

Problem
• Knowledge has feet. It can fall down from ladders or get better deal.

15.3.202412

42010 Standard

15.3.202413

42020 Standard (cont.)

15.3.202414

Both should be documented

15.3.202415

Rationale

Architectural decisions
• “Software architecture is the composition of a set of architectural design decisions” –

Jansen & Bosch, 2005
• “Architecting is making decisions. The life of a software architect is a long (and sometimes

painful) succession of suboptimal decisions made partly in the dark” – Philippe Kruchten

15.3.2024 16

Documenting the decisions
• Decisions are documented when they are made

• Rationale behind decisions available even after a long time
• Increases the amount of documentation
• May be too heavy

• Different kinds of documentation models

15.3.2024 17

Decision documentation example 1

15.3.202418

Decision documentation example 2

15.3.202419

Name

Problem

Solution / description of decision

Considered alternative solutions

Arguments in favour of decision

Arguments against the decision

Outcome

Rationale for outcome

Quality properties of software
• Run-time quality properties

• Efficiency
• Use of space
• Reliability
• Availability
• Security
• Usability
• …

• Development and evolution time quality
properties

• Adaptability
• Portability
• Maintainability
• Reusability
• …

• Quality standards: e.g. ISO 25010

15.3.2024 20

Detailed quality properties

• The grouping does not have big significance in practise.
• The list is useful for selecting the assessment targets.

15.3.202421

Functional suitability
Functional completeness
Functional correctness
Functional appropriateness

Performance Efficiency
Time behaviour
Resource utilization
Capacity

Compatibility
Co-existence
Interoperability

Usability
Appropriateness recognisability
Learnability
Operability
User error protection
User interface aesthetics
Accessibility

Reliability
Maturity
Availability
Fault tolerance
Recoverability

Security
Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability
Modularity
Reusability
Analysability
Modifiability
Testability

Portability
Adaptability
Installability
Replaceability

Architecture and business goals

15.3.202422

Results of analysis
• Analysis of a software architecture answers typically to the following questions:
1. Does the designed architecture fulfil the essential quality requirements? If it does, why?

If not, why?
2. Which of the alternative architecture solutions fits best for the system? Why?
3. How well can a given quality requirement be achieved by the designed architecture?

15.3.202423

Notes
• Assessment is based on the description of the architecture, information available and

activity of participants.
• The accuracy of the results depends on the accuracy of the given data.
• In assessment, sensible implementation has to be assumed, and the architecture must

make sensible implementation possible.

15.3.202424

The problem of software architecture analysis

15.3.202425

Quality
requirements

Software
architecture

?

Quality requirements come from stakeholders

15.3.202426

End user

Efficient, reliable, good usability

Maintainer

Easy to maintain,
portable

Assessment of quality properties
• There are no clear fulfilment criteria for quality properties.
• E.g. Maintainability: system change should be easy if its usage environment changes.
• How to assess a property if there are huge number of different kind of situations, where

the property is potentially endangered?
• Compare correctness – testing.
• General method:

• Define goals for the system, and derive the quality properties from them.
• Refine the quality properties.
• Give an example of each quality property
• Examine, if the quality property is fulfilled in the example.

15.3.202427

Refining quality requirements by scenarios
• Scenario = a situation or sequence of events that brings up if a quality requirement is

fulfilled or not (on the view of a part of the system).
• Scenario makes the quality requirement concrete using example.
• Scenario has to be accurate enough to make assessment of the architecture possible –

often precise numeric values.
• Compare traditional use case – functional requirement.
• Scenario = test case of the architecture.

15.3.202428

Solution for software architecture analysis:
scenario-based assessment

15.3.202429

Quality
requirements

Software
architecture

Scenarios

Refined
requirements

Architecture
solutions

Identified
solutions

Analysis

?

Mining data out of architecture
• Experts’ views

• The main architect, architects that have designed similar systems, etc.

• Remodelling
• The code can be abstracted by remodelling tool; this does not produce an actual architecture

description but analyses different kinds of dependencies.

• Simulation
• If there is an executable model, performance and reliability depending on the architecture can be

examined; requires modelling of the system and a good tool.

• Metrics
• Can be used as a rough tool to find out suspicious places (works mainly for maintainability)
• Requires good tools.
• E.g. Big classes, a lot of dependences between components.

15.3.202430

Alternative way: checklist-based assessment

• General / system specific checklists,
e.g.:

• Are UI parts clearly separated from the
application logic?

• Are there clear interfaces between
layers?

• Is the database abstracted behind a
general interface?

15.3.202431

Quality
requirements

Software
architecture

General
checklist

Analysis

?

Applied
checklist

System type

Utilising analysis tools
• For an existing architecture assessment, different kinds of tools can be used (e.g. metrics

tools, rule-checking tools, visualisation tools, dependability analysts, analysts for copied code,
remodelling tools).

• They are especially useful when analysing maintainability and adaptability.
• Many tools work on code (static analysis) -> might not produce architecture-level information.
• They can be utilised in scenario-based assessment e.g. retrieving and prioritising scenarios

that target to ”suspicious” parts of the system.

15.3.202432

Code copy, Visual Studio (code analysis tools)

15.3.202433

https://msdn.microsoft.com/en-us/library/hh205279.aspx

https://msdn.microsoft.com/en-us/library/hh205279.aspx

Code analysis...

15.3.202434

http://www.sonarqube.org/

http://www.sonarqube.org/

ConQAT ”architecture conformance analysis”

15.3.202435

Scenario-based analysis methods
• SAAM (Software Architecture Analysis Method)

• Concentrates especially to adaptability, portability and maintenance.
• Developed at SEI (Software Engineering Institute, Carnegie-Mellon University)
• Is based on evolution-time scenarios.

• ATAM (Architecture Trade-off Analysis Method)
• Fits for all quality properties.
• Developed at SEI.
• Derived from SAAM.

• MPM (Maintenance Prediction Method)
• Concentrates on maintainability.
• Tries to find relatively accurate cost estimation for maintenance.
• Developed by Jan Bosch
• Is based on maintenance scenarios

15.3.202436

ATAM
Architecture Tradeoff Analysis Method

15.3.2024 37

ATAM data flow

15.3.202438

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

Basic concepts of ATAM
• Scenario: a test case of an architecture
• Utility tree: refining the quality requirements of the target systems towards scenarios.
• Sensitivity point: changes on this architecture decision may cause significant changes to

and quality property.
• Trade-off point: architecture decision that affects several quality property in different

directions
• Risk: architecture decision that may cause future problems from quality attribute’s view
• Non-risk: architecture decision that may help fulfilling a quality property.

15.3.202439

Phases of ATAM (2 days)
0. Preparing
1. Present the ATAM
2. Present Business Drivers
3. Present Architecture
4. Identify Architectural Approaches
5. Generate Quality Attribute Utility Tree
6. Analyse Architectural Approaches
7. Brainstorm and Prioritise Scenarios
8. Analyse Architectural Approaches
9. Present Results

15.3.202440

1. day

2. day

Participants
• Stakeholders:

• Architect
• Administrator
• Tester
• Expert for standards
• Security manager
• Project manager
• Product manager
• Customer
• End user
• Application area expert
• Maintenance
• Marketing
• Program developer
• Hardware expert
• Ancillary service manager

• 1. day
• 3–5 persons. The architect and other persons

that have been closely been involved in the
application.

• Evaluation group
• 2. Day

• 5–10 persons. Representatives comprehensively
from all stakeholders.

• Evaluation group

15.3.202441

ATAM process (day 1)
• Presenting ATAM

• Phases of ATAM
• Technologies of ATAM (scenarios, quality tree, etc.)

• Business view
• Most important functionalities on user’s point of view.
• Business goals
• Economical, political etc. restrictions.

• Presenting the architecture
• Technical restrictions (operating system, software platforms, hardware, etc.)
• External interfaces of the system.
• Description of the architecture.

15.3.202442

ATAM Day 1 continues
• Identify Architectural Approaches

• The styles, patterns, and own solutions are identified and named.
• It is explained how the given quality requirements are achieved by a the used approach.

• Generating the quality attribute utility tree and scenarios.
• Quality requirements are refined by system-specific grouping
• Each refined quality requirement is made concrete by a scenario.
• Scenarios are prioritised by their importance and difficultness.

• Analysis of architectural approaches
• Focus on the most important scenarios.
• Question: Does this architecture make the scenario possible, and why?
• Architecture is guilty until proved otherwise.
• The intention is to find risks, safe approaches, sensitivity and trade-off points.

15.3.202443

ATAM Day 2, Supplement
• Scenario brainstorm

• All parties present scenarios from their points of views.
• New scenarios are prioritised and added to the quality tree.
• Old scenarios are confirmed.

• Re-analysis
• The most important scenarios are checked against the architecture.
• Identify possible new risks.

15.3.202444

Scenarios and scenario styles
• Scenario makes quality requirement concrete using an example. Scenario is precise (test

case, use case).
• Structure of a scenario: Stimulus – environment – response.
• Use case scenario: user’s interaction with the system.

• Remote user fetches database report using web interface during the peak load
and gets the report in 5s.

• Evolving scenario: anticipating changes
• New data server is added to the system to decrease latency by 2.5s, the work is

done in 1 person-week.
• Explorative scenario: unexpected changes, loads, etc.

• Half of the servers crash during normal operating conditions; this does not affect
the availability of the system.

• Default environment: normal operating conditions.

15.3.202445

Scenario example

15.3.202446

Analysed scenario (in assessment report)
• Typically 10–15 high-priority scenarios
• Architectural decisions relating to the

scenario are identified and classified
(e.g. T = trade-off point, R = risk, N =
non-risk).

• Description: Architect’s report how the
scenario is handled is documented.

• Argumentation: It is explained, how
each decision is connected to the
scenario.

15.3.202447

…

Example: utility tree

15.3.2024 48

Quality

Performance

Adaptability

Availability

Security

Quality
properties

ScenariosRefinements

Transaction
handling

Response time

GUI changes

Database
changes

Hardware failures

Server crash

Using credit cards

Handles 1000 service requests / s without user recognised
delay. (H,M)

User authentication < 1s. (H,M)

GUI to web-based in 1 month (M,H)

Database is changed to Oracle in 6 months (L,H)

Reboot in 5min after broken disk on server. (L,H)

Reboot in 5min after authentication servers crashes. (M,M)

Credit card data are secure 99.999% (H,L)

Prioritising scenarios
• Usually two-part priority

• How important (product manager, project manager)
• How difficult to implement (architect)

• Three values: H (high), M (medium), L (low)
• Can be done by voting

15.3.202449

Sensitivity point
• Sensitivity point = an architecture approach that is critical to reach a quality requirement
• Example: Using MVC style in GUI architecture is essential for portability of the system.

15.3.202450

Trade-off point
• Trade-off point = sensitivity point that applies for several quality requirements (often in

opposite ways).
• Example: Usage of XML as data format improves adaptability of the system but has

negative effect on performance of the system.

15.3.202451

Risk
• Risk = potentially problematic architecture approach that can weaken some quality

property.
• Risk = approach/fact + quality ramification + argument
• Example: Criteria and rules to make middle layer components are unclear (approach or

fact). This may cause replication of functionalities on different layers (argument), which
weakens maintainability (quality ramification).

15.3.202452

Non-risk
• Non-risk = architecture approach that has (mostly) only good quality ramifications.
• Non-risk = assumption + approach + quality ramification + argument
• Example: Assuming that the components do not have to consider each other's space

(assumption), the usage of the observer design pattern in the communication between the
components (approach) improves the adaptability (quality ramification) because the
components do not need to know about each other anything but recalls and registration
interfaces (argument).

15.3.202453

Reporting
• The most important results of ATAM:

• Identifying the key architecture approaches.
• Identifying the most essential use and development scenarios.
• The quality attribute utility tree and scenarios: description of connection between quality

requirements and architecture approaches.
• Identifying the risks of the architecture.

15.3.202454

Structure of report (example)
• 1. Introduction
• 2. Target System

• 2.1 Description of the System
• 2.2 Most Important Architectural Solutions

• 3. Analyzed Scenarios
• 3.1 Maintainability
• 3.2 Reliability
• 3.3 Efficiency
• 3.4 Usability

• 4. Analysis Overview
• 4.1 General Observations
• 4.2 Specific Issues
• 4.3 About the Process

• 5. Conclusions
• References
• Appendix: Complete Scenario List

15.3.2024 55

Scenarios in analysis report (example)

• Typically 10–15 high-priority
scenarios

• Architectural decisions relating to the
scenario are identified and classified
(e.g. T = trade-off point, R = risk, N =
non-risk).

• Description: Architect’s report how
the scenario is handled is
documented.

• Argumentation: It is explained, how
each decision is connected to the
scenario.

15.3.202456

…

Potential problems in ATAM / in similar methods?
• Big question: are the scenarios really sensible or useful, can the essential scenarios be

selected (forecasting).
• Found risks vs. hidden ones
• Prioritising: are the right scenarios selected?
• ”Definite” benefit: collect together all stakeholders of the software.

• Silent knowledge can be documented
• A general understanding of the system is obtained
• Worries and problems of different stakeholders are got out, and possibly get resources to take

care of some most critical aspects.

15.3.2024 57

Conclusions
• Finding architectural decisions and documenting them.
• Connecting quality properties to architecture approaches.
• Scenario-based, handling of scenarios
• ATAM:

• http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm
• http://www.sei.cmu.edu/reports/00tr004.pdf

15.3.2024 58

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm
http://www.sei.cmu.edu/reports/00tr004.pdf

DCAR
Decision-centric architecture review method

15.3.2024 59

Evaluating architectures
• Companies and ATAM is almost impossible to combine, only few companies can afford 6–

10 persons for two-day evaluation.
• Members of the evaluation group make more preparations.

15.3.2024 60

General overview of the process

15.3.202461

Preparing for pre-interview

Architecture
presentation

Business
presentation

Pre-interview

Analysis
Identifying the architectural

decision and making the
scenarios

Evaluation of the architecture

Decision evaluation Scenario
evaluation

Documented
decisions

Documented scenario
evaluations

DCAR
• Developed at TUT in co-operation with University of Groningen (RUG)
• TUT had experiences on ATAM evaluations.
• Groningen had experiences on management of architecture knowledge and documenting

the decisions.
• Test evaluations in Finnish software companies and TUT.
• www.dcar-evaluation.com

15.3.2024 62

http://www.dcar-evaluation.com/

Goals of DCAR
• Light and agile
• Incremental and iterative
• A broader consideration of the problem space.

• Not only the quality properties, but other things, too

• The evaluation coverage is somehow estimable.
• Maintaining the strengths of ATAM method (increased communication, improved

documentation etc.)

15.3.202463

Participants
• Representatives of the company / project

• Architect of the system
• Project manager, product manager, …
• Application developers
• Experts of the application area

• Evaluation group
• Head of evaluation
• 2 scribes

• Decision scribe
• Forces scribe

• Concern raisers

15.3.202464

Mythical ”force” concept
• Different kinds of things affect on architectural decisions.
• Design is directed by quality requirements like performance, adaptability.
• Several limiting conditions affect on the decision: costs, time pressure, subcontracts, etc.
• Part of the affecting things are “tacit knowledge”, e.g. architect’s opinion, knowledge of the

application area.
• All above are part of architectural knowledge, and should hence be documented.

15.3.202465

Force example

15.3.202466

<<Force>>
“I would like to use

NoSQL!”

Forces (continues)

15.3.202467

Meta model of forces

15.3.202468

Force types: Explicit
• Requirements
• Existing constraints
• Constraints for future decisions
• Technical risks
• General software engineering principles (e.g. high cohesion, low coupling)
• other decisions
• business goals (low price, quick time2market, innovation, …)
• business model
• business constraints (available licenses,…)
• company politics

15.3.2024 69

Force types: tacit
• organization culture
• organization structure
• other decisions
• experience
• expertise
• intuition and bias
• the software development process
• impediments
• laws/regulations
• politics
• time pressure
• historical decisions

15.3.2024 70

Phases of DCAR
1. Preparing the evaluation
2. Presenting DCAR method
3. Presentation of the application and business goals
4. Presenting the architecture
5. Reviewing and prioritising the decisions
6. Documenting the decisions
7. Analysing the decisions
8. Retrospection and reporting the results

15.3.2024 71

Ite
ra
tio
n

Phase 1: Preparation
• Evaluators agree the evaluation day and location with the company
• Delimiting the evaluation (which system or which parts of the system are evaluated)
• The evaluation target? What is done with the results, which are the interesting points?
• Who will hold the presentations?
• The current state for the architectural documentations? Is more needed?
• Evaluators read the existing architectural documentation.
• Inspecting the presentations in advance.

15.3.2024 72

Phase 2: DCAR presentation
• DCAR presentation in 15 minutes.
• The most important phases are repeated just before the execution phase.
• Presentation material of DCAR is given to the participants in advance so they can ask

questions of unclear issues.

15.3.2024 73

Phase 3: Presentation of business goals

• The product owner or manager presents business goals and application area in 15 minutes.
• Evaluators intend to recognise forces that have affected the decisions (either consciously or

unconsciously)

15.3.202474

Task 1: Recognising the forces
• Listen the presentation and recognise the forces.

15.3.202475

Phase 4: Presenting the architecture
• 45 min presentation about the architecture by

the architect
• Evaluators makes questions on (some) details
• Evaluators try to recognise architectural

decisions.
• Forces are still collected.
• Evaluators make decision relationship view

describing the relations between architectural
decisions.

15.3.202476

Task 2: Architectural decisions
• Recognise architectural decisions from the system and list them.

15.3.202477

Phase 5: Review and prioritisation of decisions
• Evaluators show preliminary recognised architectural decisions for other participants.
• The list will be updated with participants
• The names of decisions will be specified, if needed.
• Prioritising decisions in two stages

• 1. Stage: Initially, each stakeholder lists 3–5 decisions they want to be evaluated.
• This creates a “short list”. Decisions that did not get votes, are not evaluated.
• 2. Stage: Each stakeholder has 100 points to be shared to the short list decisions as they see

appropriate.
• Decision which has the most points is evaluated first.

15.3.202478

Phase 6: Documenting the decisions
• Each stakeholder selects 1 – 3 decisions that are familiar to him and documents them.
• Evaluators help stakeholders to document the decisions.
• Generally, the evaluators give stakeholders an example decision to act as a model

documentation.
• A part of the evaluation team finalises the graph illustrating the relations between

decisions and unite their force-lists.

15.3.202479

Documenting the decisions

15.3.202480

Name Redundancy of the controllers

Problem The application should run even if one of the redundant servers fail.

Solution / description of
decision

Solution goes here…. <Solution removed for confidentiality reasons>

Considered alternative
solutions

Both redundant server members could be active….

Arguments in favour of
decision

• Easier to implement
•….

Arguments against the decision • Slower switchover
• No possibility to offer more availability than current 99.99 %
• ….

Outcome

Rationale for outcome

Phase 7: Analysis of decisions
• Stakeholder documenting a decision will present it to the other members.
• Other stakeholders may ask questions and suggest refinements to the documentation.
• Scribe will write the refinement to the decision as needed.
• Evaluators make questions about the decision and try to find new arguments in favour of

and against the decision (these are also included in the documentation).
• Evaluators use forces-list to invent new questions.
• After 10–15 minutes, the analysis and discusses is ended (the police will take care of

timing). After that, the stakeholders vote on whether the decision is still valid or whether
there are new facts that cause pondering of the decision again.

• Stakeholders vote simultaneously with their thumbs (thumb up, down or indifferent).

15.3.202481

Phase 8: Retrospect and reporting
• Finally, there is a brief discussion on how the evaluation was going. How the operation of

evaluators can be improved, etc.
• The result will be reported in writing as soon as possible.

15.3.202482

End result – analysed decision

15.3.202483

Name Redundancy of the controllers
Problem The application should run even if one of the redundant servers fail.
Solution / description of decision Solution goes here…. Removed for confidentiality reasons..

Considered alternative solutions Both redundant server members could be active….

Arguments in favour of decision • Easier to implement
• ….

Arguments against the decision • Slower switchover
• No possibility to offer more availability than current 99.99 %
• ….

Outcome Yellow Yellow Red Green

Rationale for outcome Rationale why yellow goes
here..

Force table

15.3.202484

Decision 1 Decision 2 Dec. 3 Dec. 4

Evaluation report
Glossary
1. Introduction
1.1. Purpose and Scope
1.2. Review participants
1.2.1. Stakeholders
1.2.2. Review team
1.3. DCAR process description
1.4. Realization of the process
2. System overview
3. Architectural decisions
3.1. Decision relationship view
3.2. Prioritization of decisions
3.3. Detailed decision documentation
3.4. Traceability matrix for decisions forces and decisions
4. Potential risks, issues and indicators for technical debt
4.1. Risk X in detail
4.2. Risk Y in detail
5. Conclusions
References

15.3.202485

Pros of DCAR
• Visibility, makes wrong decisions visible.
• Lightweight (tales 4 hours + lunch)

• Even faster, if decisions are documented in advance

• Allows incremental work
• No waste
• End results directly utilised as part of architectural documentation.
• In addition, the benefits of ATAM

15.3.2024 86

Cons of DCAR
• Architectural decision as concept is new in companies => not used widely.
• Examines the current state of the system. If the evaluators are not careful, some expected

changes may be go unnoticed.
• Requires experienced evaluators.

15.3.2024 87

Example schedule
• 09:45 - 10:00 Opening words, coffee
• 10:00 - 10:15 Presentation of DCAR method
• 10:15 - 10:30 Business presentation
• 10:30 - 11:15 Architecture presentation
• 11:15 - 11:30 Break
• 11:30 - 12:00 Decision overview & prioritization
• 12:00 - 12:45 Lunch
• 12:45 - 13:15 Decision documentation
• 13:15 - 14:00 Decision evaluation
• 14:00 - 14:15 Break
• 14:15 - 15:00 Decision evaluation
• 15:00 - 15:15 Feedback & retrospective

15.3.2024 88

