
Large Scale Software Design
Frameworks & Product Lines

Hannu-Matti Järvinen, David Hästbacka
Spring 2024

What is a (software) framework?
• Traditionally: software framework is object-oriented paradigm’s way to implement product

frame
• Framework is formed of a collection of classes that implement the common architecture and

functionality of a product family
• A framework is specialised to a product

• Frameworks offer program’s (or its part’s) structure and implementation
• Generalised frameworks offer (a part of) body for the application

4.4.2024 3

The framework is specialised to a working
product

4.4.2024 4

Framework

Application
specific code

Control

Interface for specialisation

Framework vs. traditional software library:
Hollywood principle

• Hollywood principle:
• Don’t call us, we call you

4.4.20245

Application

Subclasses, classes, modules

Subclasses, components

Application specific

Reusable
Application
framework

Specialisation technologies in frameworks
• Implementation of interface (~callback)
• Inheritance (~callback)
• Creation, initialisation and configuration of objects and components
• Instantiations of generic classes (templates)
• Reflexivity (e.g. class editor of the framework that can handle also attributes specialised

by the application)

4.4.20246

Frame types
• The result of specialisation

• Application framework: the result is an application
• Framelet (component framework): result is a component
• Hierarchical framework: the result is a new framework

• The mechanism of specialisation
• White box framework: specialisation by inheritance and overloading methods
• Black box framework: specialisation by instantiation (+parameters) and initialisation configuration
• Plugin framework: specialisation by implementation of interfaces.

4.4.20247

White-box frameworks (muunneltava kehys)

4.4.20248

A

B

Black-box frameworks (koottava kehys)

4.4.20249

A

B

<<create>>

Plug-in frameworks

4.4.202410

interfaces

components

Partitioning of frameworks
• Conceptual model based approach
• Component-based approach
• Layering: hierarchical frameworks

4.4.202411

Concept model based approach
• ”OO architectural style”
1. Make conceptual model of the application area
2. Find and add generalisations (base classes) to the conceptual model
3. Convert conceptual model to a class model, add default implementations, interfaces
4. Identify variation point from the class model
5. Design the implementation of a variation point (e.g. Applying design patterns)

4.4.202412

Example: simulation framework

4.4.202413

White-box framework

4.4.202414

DefaultCreature

*

<<create>>

<<framework>>
SimulationFW

xcoord
ycoord
age

<<interface>>
Creature

World

SimulationApp

main()

EatingCreature
energy

interact(Creature)

setMyWorld(World)
show()
getX(): int
getY(): int
move()
interact(Creature)
growOld()
die()

getSize(): int
add(Creature)
remove(Creature)
show()
simulate(int, CreatureFactory)

<<create>>

setMyWorld(World)
...
die()

<<interface>>
CreatureFactory

1
createCreature(): Creature

DefaultCreatureFactory

createCreature(): Creature

<<create>>

EatingCreatureFactory

createCreature(): Creature
<<create>>

Black-box framework

4.4.202415

DefaultCreature

*

<<create>>

<<framework>>
SimulationFW

xcoord
ycoord
age

<<interface>>
Creature

World

SimulationApp

main()

EatingCreature
energy

interact(Creature)

setMyWorld(World)
show()
getX(): int
getY(): int
move()
interact(Creature)
growOld()
die()

getSize(): int
add(Creature)
remove(Creature)
show()
simulate(int,CreatureFactory)

<<create>>

setMyWorld(World)
...
die()

<<interface>>
CreatureFactory

1
createCreature(): Creature

DefaultCreatureFactory

createCreature(): Creature
<<create>>

EatingCreatureFactory

createCreature(): Creature
<<create>>

Plug-in framework

4.4.202416

*

<<interface>>
Creature

EatingCreature
energy

setMyWorld(World)
show()
getX(): int
getY(): int
move()
interact(Creature)
growOld()
die()

1

EatingCreatureFactory

createCreature(): Creature

<<load>>

PluginLoader

load()

SimulationApp

main()

World
getSize(): int
add(Creature)
remove(Creature)
show()
simulate(int,CreatureFactory)

<<interface>>
CreatureFactory

createCreature(): Creature

<<plugin>>
EatingApplication

<<framework>>
SimulationFW

Component-based approach: monolithic
frameworks vs. framelets

4.4.202417

Specialisation

Framework

Monolithic
framework

Framelet Framelet

Specialisation Specialisation

Component Component

Application

Hierarchical frame

4.4.202418

Hierarchical frame: general simulation
framework

4.4.202419

Ant simulation framework

Insect simulation framework

Animal population simulation framework

General simulation framework

Red ant simulation framework

Hierarchical frame: example framework

4.4.202420

EatingCreature, EatingCreatureFactory,
SimulationApp

DefaultCreature, DefaultCreatureFactory

World, Creature

Windows Ribbons: Example of a framework
and its documentation
• Windows and Office 2007 –style user interfaces
• How documented:

• What is it, is it worth of using: https://msdn.microsoft.com/en-
us/library/windows/desktop/dn742393%28v=vs.85%29.aspx

• Application instructions: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd316924%28v=vs.85%29.aspx

• Example: http://www.codeproject.com/Articles/119319/Windows-Ribbon-
Framework-in-Win-C-Application

4.4.202421

https://msdn.microsoft.com/en-us/library/windows/desktop/dn742393%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn742393%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd316924(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd316924(v=vs.85).aspx
http://www.codeproject.com/Articles/119319/Windows-Ribbon-Framework-in-Win-C-Application
http://www.codeproject.com/Articles/119319/Windows-Ribbon-Framework-in-Win-C-Application

Framework example, Windows Ribbons

4.4.202422

Cont.

4.4.202423

https://msdn.microsoft.com/en-us/library/windows/desktop/dd742866%28v=vs.85%29.aspx

Command and Control structure

https://msdn.microsoft.com/en-us/library/windows/desktop/dd742866(v=vs.85).aspx

Examples of frameworks
• Example code: Knockout.js

• Knockout and tutorial 2:
• http://jsfiddle.net/nfzycs4k/

• Javascript frameworks: less specialisation, more creating own instances and relying on the
services provided by the framework.

• http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks

• Web application frameworks, Struts, Django, Ruby on Rails, Vaadin…
• Games, game engines, physics, etc.
• GUI frameworks: Qt, …
• Eclipse…

4.4.202424

http://jsfiddle.net/nfzycs4k/
http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks

Javascript frameworks
Javascript frameworks:

http://www.allenpike.com/2015/javascript-framework-fatigue/
http://teropa.info/blog/2015/03/02/change-and-its-detection-in-javascript-frameworks.html
http://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks/
http://www.developereconomics.com/comparison-4-popular-javascript-mv-frameworks-part-2/

4.4.202425

http://www.allenpike.com/2015/javascript-framework-fatigue/
http://teropa.info/blog/2015/03/02/change-and-its-detection-in-javascript-frameworks.html
http://www.developereconomics.com/comparison-4-popular-javascript-mv-frameworks-part-2/

Frameworks and patterns
• Flexibility of the system can be increased by design patterns both in regular applications

(maintainability, portability) and frameworks (reusability).
• Well defined object-oriented application can often be understood as a specialisation of an

(implicit) framework.

4.4.202426

Frameworks and design patterns as
specialisation interface

4.4.202427

FrameworkApplication-specific
code

Implementation of
Design pattern

Design patterns as specialisation interface of a
framework

4.4.202428

GraphicalItem

Rectangle Circle FigGroup

*

draw

draw draw draw

children

for all children c: c.draw;

Part of the
framework

Typical GoF design patterns used in
frameworks
• Template Method (operaatiorunko):

• Problem: Static application-specific variation of a method
• Strategy

• Problem: Dynamic application-specific variation of method (during the lifetime of the master
object)

• Decorator (kuorruttaja)
• Problem: How to give a possibility to include dynamically application-specific functionality to a

given component of a framework
• Abstract Factory, Factory Method (tehtaat)

• Problem: How to create consistently objects of a given application-specific class collection in a
framework?

• Observer (tarkkailija)
• Problem: How to give a possibility to include application-specific functionality dynamically into a

component of the framework

4.4.202429

Template Method

4.4.202430

Framework

Application

Creature

draw()
move(dx, dy)

setColor(backgr)
draw()
x = x + dx
y = y + dy
setColor(color)
draw()

MyCreature

draw()

…
Draw own
creature
…

Strategy

4.4.202431

Framework

Application

Creature

setDrawer(Drawer)
move(dx, dy)

AliveDrawer

draw()

…
Draw own
live creature
…

Drawer
draw

setColor(backgr)
drawer.draw()
x = x + dx
y = y + dy
setColor(color)
drawer.draw()

DeadDrawer

draw()

…
dd = new DeadDrawer();
c.setDrawer(dd);
…

Decorator

4.4.202432

Framework

Application

Behavior
 interaction()

DefCreature
interaction()
append(Behavior)
…

next.interaction();

SpecialBehavior
interaction()

MyBehavior2
interaction()

Main:
…
c = new DefCreature();
b1 = new MyBehavior1();
c.append(b1);
…
d = new DefCreature();
b2 = new MyBehavior2();
d.append(b2);
…

Behavior::interaction();
makeSound();

MyBehavior1
interaction()

DefWorld

Behavior::interaction();
if energy < min {
 host.die(); }

Creature

DefCreature::interaction:

behav.interaction();

next
behav

BasicBehavior
interaction()

…basic interaction…;

The framefork conncts
BasicBehavior
automatically
to DefCreature

Abstract Factory

4.4.202433

Framework

Application

ElemFactory
 makeCreature(): Creature
 makeObstacle(): Obstacle

World

simulate()

Main:
…
f = new MyFactory()
world = new World(f);
world.simulate();
…

MyCreature MyFactory

makeCreature()
makeObstacle()

MyObstacle

return new MyCreature(); return new MyObstacle();

Creature

Obstacle

Observer

4.4.202434

Framework

Application

DefWorld
simulate()
register(MeteorObserver)
…

MyCreature

notifyMeteor()

…
if meteorHit {
 for all obs:
 obs.notifyMeteor();
}
…

MeteorObserver
 notifyMeteor() Creature

MeteorSource
 register(…)

Combining two frameworks with a thread

4.4.202435

MainWindow Controller Manager

Simulation
framework

GUI framework

thread

EventLoop

thread

Developing frameworks 1
• Readability. The code of the framework is readable, use of framework is producing readable

code.
• Reading code vs. Writing code

• Ease of use, simplicity
• Do not force the users to repeat the same thing (first UI description, then the same in code, etc.)
• Think code completion, too (no: getElementName, getElementType, getElemen...)
• Searching for error in runtime if something does not work correctly vs. compile time error (if statically

typed) à favor compile-time checks.

4.4.202436

Developing frameworks 2
• Hidden meanings and leaking abstractions

• Document hidden meanings
• Try to make abstraction so that they do not leak in part of the situations = consistency

• Scalability
• Simplicity, dependency injection pattern, ease of starting

4.4.2024 37

Framework properties
• Inversion of control: the framework is responsible on general execution of the program

(not the programmer or the code using the framework)
• Scalability, customisation: creating new parts, specialising basic services of the

framework, using parameters...
• The framework has a default functionality: the framework is doing something, its not just a

collection of empty interfaces.
• Frameworks own code is not modified (like in the case of libraries).

4.4.2024 38

Pros of frameworks
• Benefits of frameworks as implementation technology of product platforms:

• A lot of experience (e.g. GUI frameworks)
• Applies common, well-known OO technology
• Supports open variation points
• Supports layered or hierarchical product platforms well
• “Hard experts make the framework”

4.4.2024 39

Cons of frameworks
• Technically demanding way to make the software, the process is often very iterative.
• The frameworks become easily large and complex software that is difficult to manage.
• Usage of time, costs, if only a single application is made.
• Testing of these applications can be difficult without framework’s code.
• Making an application on top of the frame: learning, flexibility ?, dependencies.

4.4.202440

Conclusions 1
• Traditional framework is the way of OO to implement product platform.
• Framework architectures are used widely in companies, experiences are mostly positive.
• Making a framework is much more demanding then writing a single application.
• Avoid making white-box frameworks.
• Framework may be slim when compared to the application itself: functional frame and

contents.

4.4.202441

Conclusions 2
• Basic use of design patterns and frameworks should be successful without studying design

patterns
• Avoid unnecessary details, make usage as simple as possible
• Describe things on users’ point of view, not how they are implemented inside the framework

• Javascript frameworks and similar
• Offer help to implement the application
• E.g., Ready MVC platform; no need to implement it from scratch.
• The user’s code takes care of actual application part, framework takes care of general matters.

4.4.202442

Product-line architectures

Product-line approach in general
• A same kind of product with different properties for different target groups
• Cars:

• Different levels of equipments
• Different motors
• Sedan, hatchpack, cabriolet,…

• Display drivers:
• Performance, power dissipation, noise
• Same production line, cut versions (testing premium properties, if failing, sell the product as lower

model; functionalities cancelled by bios or mechanical solutions)

4.4.202444

Reuse
• Opportunistic: Code that by coincidence fits for the new application is used
• Designed: organisation uses resources to develop generally reusable software that

provides abstractions and variation points suitable for the industry.
• Opportunistic way does not work well in practise

• Reuse hard, even designed way does not guarantee success

• Bottom-up: Potentially reusable components are added to the commonly used library
from which ready-made components are searched for a new application.

• Top-down: Reusable software is tailored to a wider areas (e.g. Interfaces, architectures,
frames).

• The bottom-up approach leads to low-level reuse.

4.4.2024 45

Definitions
• Product family: a set of software products having a same kind of structure and

functionality
• Product line: All the artefacts, tools and processes that support development and

maintenance of product family members.
• Product line architecture: When the products share the product line, they share also its

architecture

4.4.2024 46

Product line = reuse of software that are based
on a common architecture and platform
• Product-line architecture

• http://www.sei.cmu.edu/productlines/
• Software Product Line Engineering: Foundations, Principles and Techniques: Klaus Pohl, Günter

Böckle, Frank J. van der Linden (2005)

4.4.2024 47

http://www.sei.cmu.edu/productlines/

Examples of product lines
• Cellular phones
• Insurance systems
• Banking systems
• Computer games

• Angry Birds, Angry Birds Rio, Angry Birds Magic, Angry Birds Space, Angry Birds Star Wars,
Angry Birds Star Wars II, Angry Birds Seasons, Angry Birds Stella….

• Machine control systems

4.4.2024 48

Product family example (health services)

4.4.2024 49

Different versions and service levels
• Freehand / free version / test version
• Basic version
• Premium model

4.4.2024 50

Some ways to implement
• Registrations:

• The simplest model: a code to activate full version is given when purchasing.
• A little bit advanced: registration by the applications, application is connected to the device it

resides.
• Check is done during start-up (license file or network check).

• Often all versions in the same package, but a run-time check if license is available.
• Also by libraries: extended library loaded when a better version is registered.

4.4.2024 51

Software development based on product lines
• Key objectives: significant re-use, shorter development time, better quality with less

resources, a consistent and streamlined development process, consistent products
• Prerequisites: A product family with sufficient common features and a well-understood

variation is desirable: requirements must define scope, common requirements and
variation points

• Product-line type situations arise sometimes without a clear product family concept:
• Ignorant requirements often result in variation points
• Open source is often interpreted as a product line
• Products are wanted to be "customisable"

4.4.2024 52

Viewpoints of product-line-based software
development
• The business point of view

• When is the product line approach economically feasible? What kind of business models?

• The organisational point of view
• How can an organisation adopt and support product-line approach and development?

• Process point of view
• What kind of development process is suitable of product lines?

• Technical point of view
• What kind of architecture models and technologies are used for product lines?

4.4.2024 53

Business viewpoint 1

4.4.2024 54

Number of applications

C
um

ul
at

iv
e

co
st

s

0 1 2 3 4 5

Product line
repayment

1C

2C

3C

4C

Building the framework

traditional

Business viewpoint 2

• Is based on work estimation methods
• In H.P. et al.: A quality-based cost estimation model for the product-line life-cycle. CACM 49 (2006), 85-

88

4.4.202455

Example (“real”)
• Application area: videogames

• Easy to make new games with small changes
• The performance and space requirements of the application got worse

4.4.202456

Santelices R.A., Nussbaum M.: A framework for the development of videogames.
Software Practice & Experience 31 (2001), 1091-1107.

0 100 800700600500400300200 900
Work hours

Traditional

Based on a framewoirk

1. game 2. game 3. game

Building the framework + education

1.
 g

am
e

2.
 g

am
e

3.
 g

am
e Performance:

time +70%
space +200%

Product lines and costs
• Making product line without a product is challenging

• Abstracting or generalising wrong concepts
• Easy to stuck
• Without product hard to estimate essential things

• A common way is to make the first product fast
• Utilising the experiences, making product line easier and faster
• The product is got quickly to the market
• Danger: The first product is forced be more general.

4.4.2024 57

Pros of product lines
• Extremely reused code and know-how
• Special expertise of implementers decreased
• Accelerated product cycle
• Productivity growth in the long run
• Product standardisation
• Standardisation of development process and tools
• Quality improvement
• Support fast prototypes

4.4.2024 58

Cons of product lines
• Staff turnover: motivation, expertise
• Stiffens development
• Conflict frameworks vs. products (coverage, schedule, resources, etc.)
• Conflicts between desired properties of products
• The first product takes a long time
• How to test a product line?
• Product-line focus may disappear
• Quarterly economics

4.4.2024 59

Maturity levels of reuse

4.4.202460

Maturity levelConfigurable product line
(automatic support for product construction)

Common architecture, variation points (product line)

Common framework, some common functionality

Standard infrastructure
(common OS, DB, GUI etc.)

Independent products

Different types of product-line software
development
• Has the company previously had software in the target area?
• Will the product line be made progressively or at a time?

• Convert existing components to more general ones.
• Replace existing components with a product platform.
• Develop a new platform gradually for a growing product family (no existing software).
• Develop a new platform at a time for the entire product family planned (no existing software).

4.4.2024 61

Product line process

4.4.202462

Requirement
specification

Planning
of platform

Conceptual model
of application area

Implementation
of platform

Adaptability
requirements

Product-line
architecture

Common
requirements

Framework development process

Platform

Product
requirements

Impementation
of the product

Product-line
interface

Application-
specific

code

Application development process

Pr
od

uc
t

Requirement
specification

Variation management

analysis

includes

Requirements and design decisions
• Ultimately, the contract defines the requirements, all subsequent decisions are planning
• In the case of a product line, there is usually no contract, but the product line is made for

internal use
• (Especially) in the case of a product line, there is no clear distinction between

requirements and design: the requirements are planned, too

4.4.2024 63

Product-line organisation

4.4.2024 64

Customer

Product groupsProduct line
group

Management

Customer
needs

Potential of product
line Product properties

Components
Updates
Requirements
Potential

Products

Potential of product line

Requirements

Feedback

Marketing

Technologies supporting product lines
• Component technologies
• Object technologies, frameworks
• Model-based methods

• Domain specific languages (DSL), application area oriented models

• Parameterisation, parts to be interpreted
• Environments for textual and visual languages

4.4.2024 65

Tier style for product-line architectures

4.4.2024 66

Application platform

Architectural platform

Resource platform

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Designing a product line based on tier style
1. Decide on the general support services and plan their abstraction
2. Decide on a basic architectural style and design the infrastructure it needs (e.g.

messaging, client-server)
3. Design the common components of the product family and implement the variation

points
4. Note: Some layers may be very thin or even missing

4.4.2024 67

Tier architecture helps to maintain the product
line
• What parts are affected by database changes?
• How to ensure that the basic product-line architecture is not changed?
• How to ensure that single product issues are not brought into the basic architecture?
• How to ensure that product-specific issues are not messed up with application-specific

issues?
• Which parts have the most affect on the quality features? What parts are (likely) to be

changed if the quality requirements change?

4.4.2024 68

