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What is a (software) framework?
• Traditionally: software framework is object-oriented paradigm’s way to implement product 

frame
• Framework is formed of a collection of classes that implement the common architecture and 

functionality of a product family
• A framework is specialised to a product

• Frameworks offer program’s (or its part’s) structure and implementation
• Generalised frameworks offer (a part of) body for the application
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The framework is specialised to a working 
product
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Framework vs. traditional software library: 
Hollywood principle

• Hollywood principle:
• Don’t call us, we call you

4.4.20245

Application

Subclasses, classes, modules

Subclasses, components

Application specific

Reusable
Application
framework



Specialisation technologies in frameworks
• Implementation of interface (~callback)
• Inheritance (~callback)
• Creation, initialisation and configuration of objects and components
• Instantiations of generic classes (templates)
• Reflexivity (e.g. class editor of the framework that can handle also attributes specialised 

by the application)
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Frame types
• The result of specialisation

• Application framework: the result is an application
• Framelet (component framework): result is a component
• Hierarchical framework: the result is a new framework

• The mechanism of specialisation
• White box framework: specialisation by inheritance and overloading methods
• Black box framework: specialisation by instantiation (+parameters) and initialisation configuration
• Plugin framework: specialisation by implementation of interfaces.
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White-box frameworks (muunneltava kehys)
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Black-box frameworks (koottava kehys)
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Plug-in frameworks

4.4.202410

interfaces

components



Partitioning of frameworks
• Conceptual model based approach
• Component-based approach
• Layering: hierarchical frameworks
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Concept model based approach
• ”OO architectural style”
1. Make conceptual model of the application area
2. Find and add generalisations (base classes) to the conceptual model
3. Convert conceptual model to a class model, add default implementations, interfaces
4. Identify variation point from the class model
5. Design the implementation of a variation point (e.g. Applying design patterns)
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Example: simulation framework
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White-box framework
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Black-box framework
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Plug-in framework
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Component-based approach: monolithic 
frameworks vs. framelets
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Hierarchical frame
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Hierarchical frame: general simulation 
framework
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Hierarchical frame: example framework
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Windows Ribbons: Example of a framework
and its documentation
• Windows and Office 2007 –style user interfaces
• How documented:

• What is it, is it worth of using: https://msdn.microsoft.com/en-
us/library/windows/desktop/dn742393%28v=vs.85%29.aspx

• Application instructions: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd316924%28v=vs.85%29.aspx

• Example: http://www.codeproject.com/Articles/119319/Windows-Ribbon-
Framework-in-Win-C-Application
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Framework example, Windows Ribbons
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Cont.
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https://msdn.microsoft.com/en-us/library/windows/desktop/dd742866%28v=vs.85%29.aspx

Command and Control structure

https://msdn.microsoft.com/en-us/library/windows/desktop/dd742866(v=vs.85).aspx


Examples of frameworks
• Example code: Knockout.js

• Knockout and tutorial 2:
• http://jsfiddle.net/nfzycs4k/

• Javascript frameworks: less specialisation, more creating own instances and relying on the 
services provided by the framework.

• http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks

• Web application frameworks, Struts, Django, Ruby on Rails, Vaadin…
• Games, game engines, physics, etc.
• GUI frameworks: Qt, …
• Eclipse…
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Javascript frameworks
Javascript frameworks:

http://www.allenpike.com/2015/javascript-framework-fatigue/
http://teropa.info/blog/2015/03/02/change-and-its-detection-in-javascript-frameworks.html
http://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks/ 
http://www.developereconomics.com/comparison-4-popular-javascript-mv-frameworks-part-2/
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Frameworks and patterns
• Flexibility of the system can be increased by design patterns both in regular applications 

(maintainability, portability) and frameworks (reusability).
• Well defined object-oriented application can often be understood as a specialisation of an 

(implicit) framework. 
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Frameworks and design patterns as 
specialisation interface
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Design patterns as specialisation interface of a 
framework
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Typical GoF design patterns used in 
frameworks
• Template Method (operaatiorunko):

• Problem: Static application-specific variation of a method
• Strategy

• Problem: Dynamic application-specific variation of method (during the lifetime of the master 
object)

• Decorator (kuorruttaja)
• Problem: How to give a possibility to include dynamically application-specific functionality to a 

given component of a framework
• Abstract Factory, Factory Method (tehtaat)

• Problem: How to create consistently objects of a given application-specific class collection in a 
framework? 

• Observer (tarkkailija)
• Problem: How to give a possibility to include application-specific functionality dynamically into a 

component of the framework
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Template Method
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Application

Creature

draw()
move(dx, dy)

setColor(backgr)
draw()
x = x + dx  
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…
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Strategy
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Application

Creature

setDrawer(Drawer)
move(dx, dy)

AliveDrawer

draw()

…
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…

Drawer
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drawer.draw()
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Decorator
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Framework

Application

Behavior
   interaction()

DefCreature
interaction()
append(Behavior)
…

next.interaction();

SpecialBehavior
interaction()

MyBehavior2
interaction()

Main:
…
c = new DefCreature();
b1 = new MyBehavior1();
c.append(b1);
…
d = new DefCreature();
b2 = new MyBehavior2();
d.append(b2);
…

Behavior::interaction();
makeSound();

MyBehavior1
interaction()

DefWorld

Behavior::interaction();
if energy < min {
   host.die(); }

Creature

DefCreature::interaction:

behav.interaction();

next
behav

BasicBehavior
interaction()

…basic interaction…;

The framefork conncts
BasicBehavior
automatically
to DefCreature



Abstract Factory

4.4.202433

Framework

Application

ElemFactory
   makeCreature(): Creature
   makeObstacle(): Obstacle

World

simulate()

Main:
…
f = new MyFactory()
world = new World(f);
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…

MyCreature MyFactory

makeCreature()
makeObstacle()

MyObstacle

return new MyCreature(); return new MyObstacle();

Creature

Obstacle



Observer
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Application

DefWorld
simulate()
register(MeteorObserver)
…

MyCreature

notifyMeteor()

…
if meteorHit {
   for all obs:
      obs.notifyMeteor();
}
…

MeteorObserver
   notifyMeteor() Creature

MeteorSource
   register(…)



Combining two frameworks with a thread
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Developing frameworks 1
• Readability. The code of the framework is readable, use of framework is producing readable 

code.
• Reading code vs. Writing code

• Ease of use, simplicity
• Do not force the users to repeat the same thing (first UI description, then the same in code, etc.)
• Think code completion, too (no: getElementName, getElementType, getElemen...)
• Searching for error in runtime if something does not work correctly vs. compile time error (if statically 

typed) à favor compile-time checks.
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Developing frameworks 2
• Hidden meanings and leaking abstractions

• Document hidden meanings
• Try to make abstraction so that they do not leak in part of the situations = consistency

• Scalability
• Simplicity, dependency injection pattern, ease of starting
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Framework properties
• Inversion of control: the framework is responsible on general execution of the program 

(not the programmer or the code using the framework)
• Scalability, customisation: creating new parts, specialising basic services of the 

framework, using parameters...
• The framework has a default functionality: the framework is doing something, its not just a 

collection of empty interfaces.
• Frameworks own code is not modified (like in the case of libraries).  
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Pros of frameworks
• Benefits of frameworks as implementation technology of product platforms:

• A lot of experience (e.g. GUI frameworks)
• Applies common, well-known OO technology
• Supports open variation points
• Supports layered or hierarchical product platforms well
• “Hard experts make the framework”
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Cons of frameworks
• Technically demanding way to make the software, the process is often very iterative.
• The frameworks become easily large and complex software that is difficult to manage.
• Usage of time, costs, if only a single application is made.
• Testing of these applications can be difficult without framework’s code.
• Making an application on top of the frame: learning, flexibility ?, dependencies.
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Conclusions 1
• Traditional framework is the way of OO to implement product platform.
• Framework architectures are used widely in companies, experiences are mostly positive.
• Making a framework is much more demanding then writing a single application.
• Avoid making white-box frameworks.
• Framework may be slim when compared to the application itself: functional frame and 

contents.
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Conclusions 2
• Basic use of design patterns and frameworks should be successful without studying design 

patterns
• Avoid unnecessary details, make usage as simple as possible
• Describe things on users’ point of view, not how they are implemented inside the framework

• Javascript frameworks and similar
• Offer help to implement the application
• E.g., Ready MVC platform; no need to implement it from scratch.
• The user’s code takes care of actual application part, framework takes care of general matters.
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Product-line architectures



Product-line approach in general
• A same kind of product with different properties for different target groups
• Cars:

• Different levels of equipments
• Different motors
• Sedan, hatchpack, cabriolet,…

• Display drivers:
• Performance, power dissipation, noise
• Same production line, cut versions (testing premium properties, if failing, sell the product as lower 

model; functionalities cancelled by bios or mechanical solutions)
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Reuse
• Opportunistic: Code that by coincidence fits for the new application is used
• Designed: organisation uses resources to develop generally reusable software that 

provides abstractions and variation points suitable for the industry.
• Opportunistic way does not work well in practise

• Reuse hard, even designed way does not guarantee success

• Bottom-up: Potentially reusable components are added to the commonly used library
from which ready-made components are searched for a new application.

• Top-down: Reusable software is tailored to a wider areas (e.g. Interfaces, architectures, 
frames).

• The bottom-up approach leads to low-level reuse.
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Definitions
• Product family: a set of software products having a same kind of structure and 

functionality
• Product line: All the artefacts, tools and processes that support development and 

maintenance of product family members.
• Product line architecture: When the products share the product line, they share also its 

architecture
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Product line = reuse of software that are based 
on a common architecture and platform
• Product-line architecture

• http://www.sei.cmu.edu/productlines/
• Software Product Line Engineering: Foundations, Principles and Techniques: Klaus Pohl, Günter 

Böckle, Frank J. van der Linden  (2005)
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Examples of product lines
• Cellular phones
• Insurance systems
• Banking systems
• Computer games

• Angry Birds, Angry Birds Rio, Angry Birds Magic, Angry Birds Space, Angry Birds Star Wars, 
Angry Birds Star Wars II, Angry Birds Seasons, Angry Birds Stella….

• Machine control systems
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Product family example (health services)
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Different versions and service levels
• Freehand / free version / test version
• Basic version
• Premium model
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Some ways to implement
• Registrations:

• The simplest model: a code to activate full version is given when purchasing.
• A little bit advanced: registration by the applications, application is connected to the device it 

resides.
• Check is done during start-up (license file or network check).

• Often all versions in the same package, but a run-time check if license is available.
• Also by libraries: extended library loaded when a better version is registered.

4.4.2024 51



Software development based on product lines
• Key objectives: significant re-use, shorter development time, better quality with less 

resources, a consistent and streamlined development process, consistent products
• Prerequisites: A product family with sufficient common features and a well-understood 

variation is desirable: requirements must define scope, common requirements and 
variation points

• Product-line type situations arise sometimes without a clear product family concept:
• Ignorant requirements often result in variation points
• Open source is often interpreted as a product line
• Products are wanted to be "customisable"
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Viewpoints of product-line-based software 
development
• The business point of view

• When is the product line approach economically feasible? What kind of business models?

• The organisational point of view
• How can an organisation adopt and support product-line approach and development?

• Process point of view
• What kind of development process is suitable of product lines?

• Technical point of view
• What kind of architecture models and technologies are used for product lines?
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Business viewpoint 1
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Business viewpoint 2

• Is based on work estimation methods
• In H.P. et al.: A quality-based cost estimation model for the product-line life-cycle. CACM 49 (2006), 85-

88

4.4.202455



Example (“real”)
• Application area: videogames

• Easy to make new games with small changes
• The performance and space requirements of the application got worse
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Product lines and costs
• Making product line without a product is challenging

• Abstracting or generalising wrong concepts
• Easy to stuck
• Without product hard to estimate essential things

• A common way is to make the first product fast
• Utilising the experiences, making product line easier and faster
• The product is got quickly to the market
• Danger: The first product is forced be more general.
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Pros of product lines
• Extremely reused code and know-how
• Special expertise of implementers decreased
• Accelerated product cycle
• Productivity growth in the long run
• Product standardisation
• Standardisation of development process and tools
• Quality improvement
• Support fast prototypes 
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Cons of product lines
• Staff turnover: motivation, expertise
• Stiffens development
• Conflict frameworks vs. products (coverage, schedule, resources, etc.)
• Conflicts between desired properties of products
• The first product takes a long time
• How to test a product line?
• Product-line focus may disappear
• Quarterly economics
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Maturity levels of reuse
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Different types of product-line software 
development
• Has the company previously had software in the target area? 
• Will the product line be made progressively or at a time?

• Convert existing components to more general ones.
• Replace existing components with a product platform.
• Develop a new platform gradually for a growing product family (no existing software).
• Develop a new platform at a time for the entire product family planned  (no existing software).
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Product line process
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Requirements and design decisions
• Ultimately, the contract defines the requirements, all subsequent decisions are planning
• In the case of a product line, there is usually no contract, but the product line is made for 

internal use
• (Especially) in the case of a product line, there is no clear distinction between 

requirements and design: the requirements are planned, too
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Product-line organisation
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Technologies supporting product lines
• Component technologies
• Object technologies, frameworks
• Model-based methods

• Domain specific languages (DSL), application area oriented models

• Parameterisation, parts to be interpreted
• Environments for textual and visual languages
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Tier style for product-line architectures
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Designing a product line based on tier style
1. Decide on the general support services and plan their abstraction
2. Decide on a basic architectural style and design the infrastructure it needs (e.g. 

messaging, client-server)
3. Design the common components of the product family and implement the variation 

points
4. Note: Some layers may be very thin or even missing
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Tier architecture helps to maintain the product 
line
• What parts are affected by database changes?
• How to ensure that the basic product-line architecture is not changed?
• How to ensure that single product issues are not brought into the basic architecture?
• How to ensure that product-specific issues are not messed up with application-specific 

issues?
• Which parts have the most affect on the quality features? What parts are (likely) to be 

changed if the quality requirements change?
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