
Large Scale Software
Design
Interaction of components

Interaction of components
The more dependencies there are between the components, the harder it is to replace a
component with another one.
Here we concentrate on some ideas how change dependencies to interactions.

24.1.2024 3

Interaction of components
Role interfaces
Brokers
Facades
Call forwarding
Proxies
Callbacks
Events
Messages
Adapters

Removing implementation dependencies from
interfaces

A calls B, i.e. A depends on B. Adding an interface removes
dependency.

24.1.2024 4

A B

A B

IB
A does not know

what

how

Role-based interfaces

24.1.2024 5

Client1

Server

Role1

Client2 Role2

Client1

Server

Services

Client2

Client1 uses Server in
different role than Client2,
and hence also different
services

Example

24.1.2024 6

Button

VisualComponent

EventSource

Detailed role interfaces

24.1.2024 7

Clients Service
providers

Roles

A

B

C

D

P

Q

X

Y

Z

Traditional interface of P

Traditional interface of Q

Managing component interactions
A set of components
communicating with each
other

24.1.2024 8

Managing component interactions
Problems:

• Dependencies between components are
complex and hard to manage

• If any connection is changed, all participants
have to be changed

• It not easy to use components in other
context

• Following the functionality of the program
becomes hard

• Dynamic libraries and components are hard to
manage

24.1.2024 9

Example of components

24.1.2024 10

ListBox
TextField Button

File dialog Tooltip

Example

24.1.2024 11

Air quality
management

Window
management

Air conditioning
management

Open
window

Close air
conditioning

Centralising dependencies: Mediator
The control of interactions is centralised by limiting the
responsibilities of components and taking in use a new
component that is responsible for interaction management
Benefits:
• Interaction as its own whole (broker), can be changed

or tailored without changes to other components.
• Makes components independent of each other.
• Simplifies communication (one-to-many, not many-to-

many)
Problem: the centralised component may itself grow
complex.

24.1.2024 12

Example

24.1.2024 13

Air quality
management

Window
management

Air conditioning
management

Open window
Close air conditioning

Call forwarding (delegation)

Different kinds of reasons:
• Side function not visible for the requester is wanted
• Easy dynamical change of implementation is wanted
• Call mode change is wanted
• Hiding the actual executor is wanted

24.1.2024 14

op B

op()
op B

op()

Bimp

imp

…
imp.opimp();
…

opimp()
Actual executor
of the service

B gets a service request:

Common basic mechanism in many
standard solutions

Call forwarding: example

Customer moves the request directly to KeyCustomer; AccountManager is not aware of this

24.1.2024 15

Account
Manager

Customer

Chargable
discount(int): int

CustomerSupport
discount(int): int

KeyCustomer
Support

Choking dependencies: Facade

24.1.2024 16

Subsystem Subsystem

Facade

24.1.2024 17

Facade (traditional, recorded)
Lecture

• Check the phone (silent mode)
• Open lecture room system, select lighting, source of display, etc.
• Log in lecture room computer
• Open Powerpoint, start display mode
• Remember to use the microphone (otherwise voice is not recorded)
• Wait for recording to start, then start lecturing
• Hold lecturing
• Mute the microphone
• Hold recording (if possible)
• Unmute the microphone
• Continue recording (if held)
• Continue lecturing
• End lecturing
• Mute the microphone, put it in charger
• Stop recording (closes automatically, so don’t worry; publishing is done

automatically)
• Log out the computer
• Turn off lights, videos, etc.
• Phone to normal mode

With facade:
• Start the lecture
• Hold the lecture
• Continue the lecture
• End lecture

24.1.2024 18

Facade (online lecture)
Lecture

• Check the phone (silent mode)
• Log in the lecturing computer
• Sign in Zoom home page to get the host privilege
• Open Zoom, mute microphone and disable camera; open chat
• Open Powerpoint, start display mode
• Wait until starting time
• Unmute, enable camera, start recording
• Share the Powerpoint
• Hold lecturing
• Mute the microphone, disable camera
• Hold recording
• Unmute the microphone, enable camera
• Continue recording
• Continue lecturing
• End lecturing, stop sharing Powerpoint
• Mute the microphone, disable camera and stop recording
• End the session for all; recording is converted and saved on local computer
• Phone to normal mode
• Open Panopto. Upload the recording (takes some time).
• When recording is uploaded, close the connection. Panopto processes the

video (2-6 hours) and publish it.

With facade:
• Start the lecture
• Hold the lecture
• Continue the lecture
• End lecture

24.1.2024 19

Façade pattern
Is used to give a subsystem a simple default interface, suitable for most of the users,
to perform higher level services that can connect several functionalities.
Façade does not completely hide the components of the subsystem from direct use.
Can be used in layered architecture to give each layer simple connection point and
interface.
Compare to broker: façade is a one-way service, typically façade only delivers the
calls to the correct component(s).
The use of façade can be further restricted with roles (different façade for different
users).

Example

24.1.2024 20

StudentFacade

registerStudent
removeStudent
getStudentInfo

StudyRegister

StudentRegister

PaymentSystem
regStudentToCourse
removeStudentFromCourse

Removing component dependencies
using proxy
Proxy: a component that represents another component in some context so that clients of the
component do not know about this. Typically the proxy makes some side functions when
fulfilling the service request.

24.1.2024 21

ProxyClient
op op Service

provider

24.1.2024 22

Applications
When direct connection to the resource is not wanted
Distributed systems
Delayed loading (e.g. object bases), partitioned loading.
Intelligent pointers
Security, authentication of clients
Smart proxy: smart selection of the service provider.

Proxy pattern

24.1.2024 23

Client

Proxy

Services
request()

Server

request()
...
actual.request()

actual

24.1.2024 24

Different kinds of proxies, usages
Virtual proxy: delayed loading, etc. Works in-between and ensures that heavy operations
are not started in vain.
Protection proxy: the user can’t use the service or the resource directly, the proxy in-
between may contain e.g. authentication.
Remote proxy: usage of network resources through an interface, the proxy takes care of
connections (e.g. directs calls to correct places, gives additional security etc.)

24.1.2024 25

Proxy vs. Mediator vs. Broker
Proxy hides the service from its users
Mediator acts as a centralised connection manager.
Broker, as above, but conceptual difference. Resources are distributed, can alter the
location, etc.

• Broker knows where to find the services
• Can execute the services and return the results to the client or work as a

library: give a service
Brokers, proxies, adapters etc. cooperating.
Several brokers; may know each other

Broker (service registering)

24.1.2024 26

Broker (deliver request)

24.1.2024 27

24.1.2024 28

Removing dependencies using
callbacks
Callback: A call by the service provider to the service requester during the service
execution. It is a technique to allow the caller to get control in the middle of service.
Typically the service is part of a general library that shall not become dependent on
applications using the library.
Callback makes application-specific tailoring for a general service possible.

Callback

24.1.2024 29

service
call

callback

library

application

return

: Library : Application

Service call
Callback

Return

Service
return

callback

Sequence chart:

Callback interface
Note: in real car system engine control etc. are separate systems than physical devices
(messaging through a bus).

24.1.2024 30

Engine

Car
setup()
warn(str)
...

PowerSource
start()
stop()
setUser(EngineUser)

log.output("Oil pressure low");
myeng.stop();

run()

…
if (oilpressure<limit) {
 user.warn();
...

myeng = new Engine();
myeng.setUser(this);
myeng.start();

General

Application specific

Callback interface

With exceptions

24.1.2024 31

Engine

Car
setup()
warn(str)
...

PowerSource
start() throws Oilpressure
stop()
setUser(EngineUser)

start()…
if (oilpressure<limit) {
 ...
 throw new Oilpressure();
}
...

General

Application
specific

Differences:
• No callback interface
• Calling unit (Car) has to expect

exceptions.
Pros:
• Simpler.
• The library unit need not to know

anything about caller’s operations
(not even the callback interface).

Cons:
• The library unit can’t continue after

exception handling (not needed
here).

24.1.2024 32

Decreasing dependencies using
events

An event is a run-time data object of the program (in this context).
• It is created by a component,
• One or more components react to its creation.
• It vanishes when there are no components that should react to its

creation.
The creator of an event does not know units reacting to the creation.
Events remove visible dependency, but if used incorrectly they don’t alter the
functional dependencies (understanding and modifying the behaviour can be even
harder).

Traditional call vs. Event

24.1.2024 33

Service
caller

Service
provider

Event

Reacting to
event

Event creator

Events in user interfaces

24.1.2024 34

GUI

Application logic

User’s commands State changes

Synchronic callback-based event
handling

24.1.2024 35

Event
cause

registering

Event notification
(callback)

Reacting Units

Synchronous =
The unit that caused the event
will wait event handling to
complete before it continues.

Observer pattern

24.1.2024 36

SourceComp ObserverComp

Observer
update(Event)

Source
register(Observer)
unregister(Observer)

obs src

Message-based communication

Components implement generic receive interface (and use it either directly or through a broker).
Components communicate with each other sending messages
Message dispatcher takes care of message delivery.

24.1.2024 37

Component 1 Component 2

receive(Message m)

Message

Interfaces vs. Messages

The interface tells what is done and by which information, message can tell what ever (what is
done, who does, which information).

24.1.2024 38

Service
requestor

Interface

Message

Service
provider

implements

Service
provider

Reads and
implements

Message-passing architectures,
Service busses (ESB),
Smalltalk

Components,
Client-server,
Web services (SOA),
C++, Java calls

writes

func A(X…)

ACTION = A
PAR1 = X

Message
broker

Removing interface dependencies using adapters

Adapter: program unit between the requester and provider of a service. Makes requester
independent of the provider’s interface.

24.1.2024 39

Adapter

Component 1 Component 2

Request made using interface A

Request made using interface B

Adapter and events
Using adapters in event-based communication between components
Adapter fulfils observer interface

24.1.2024 40

Component A Component B
Adapter

registering

Notify event service
call

24.1.2024 41

Conclusions
Role interfaces give architecture that is more precise.
Using a broker concentrates on centralised interaction.
A Façade concentrates usage of subsystems.
Side functionality can be added by proxies.
Control is temporarily transferred back to the caller by callbacks.
Observer is a common solution for event-based interaction.
Message-based communication loosens ties.
Interfaces can be modified by adapters.

24.1.2024 42

Links and reading
A set of Java patterns: http://www.java-forums.org/ocmjea/57996-tutorial-review-java-
design-patterns-java-architect-exam.html
About broker: Pattern-oriented Software architecture for dummies (chapter 12).
Mediator and message passing example Java Message Service

http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
Mediator, simple example code: http://www.journaldev.com/1730/mediator-design-
pattern-in-java-example-tutorial
Proxy pattern: http://www.oodesign.com/proxy-pattern.html

http://www.java-forums.org/ocmjea/57996-tutorial-review-java-design-patterns-java-architect-exam.html
http://www.java-forums.org/ocmjea/57996-tutorial-review-java-design-patterns-java-architect-exam.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.oodesign.com/proxy-pattern.html

