.

- Tampereen yliopisto
Tampere University

Large Scale Software
Design
Interaction of components

a

= Tampereen yliopisto
Tampere University

Interaction of components

The more dependencies there are between the components, the harder it is to replace a
component with another one.

Here we concentrate on some ideas how change dependencies to interactions.

a

= Tampereen yliopisto
Tampere University

Interaction of components

Role interfaces
Brokers
Facades

Call forwarding
Proxies
Callbacks
Events
Messages
Adapters

24.1.2024 3

a

="] Tampereen yliopisto
Tampere University

Removing implementation dependencies from

interfaces
=1 =1
A > B
& T Rdossnotknow
A g @ B g how

what

A calls B, i.e. A depends on B. Adding an interface removes

dependency.)
24.1.2024

a

Tampereen yliopisto
Tampere University

Role-based interfaces

Client1

Client2

=

/@

Serwces

Server

Client1

=

Client1 uses Server in
different role than Client2,
and hence also different
services

=

\Rcﬂm@

Client2

=

Server

-

Role2

24.1.2024 5

a

= Tampereen yliopisto
Tampere University

Example

VisualComponent

O =
Button
O

EventSource

24.1.2024 6

a

= Tampereen yliopisto
Tampere University

Detailed role interfaces

Clients Roles Serv_ice
providers

Traditional interface of P

1 F

—— | Qq

Traditional interface of Q

24.1.2024

a

="] Tampereen yliopisto
Tampere University

Managing component interactions

A Ay
A set of components
communicating with each
other
Ay A

24.1.2024 8

a

Tampereen yliopisto
Tampere University

Managing component interactions

—

‘

TN
e

Problems:

Dependencies between components are
complex and hard to manage

If any connection is changed, all participants
have to be changed

It not easy to use components in other
context

Following the functionality of the program
becomes hard

Dynamic libraries and components are hard to
manage

24.1.2024 9

C 7] Tampereen yliopisto
Tampere University

Example of components

P 3 Save As
T . » ThisPC » Local Disk(C:) » Users » samuel » Dropbox » » 2015 » Luennot » v < Search Luennot
Organise « New folder -
-
Bl Desktop -~ Name Date modified Type Size
& Downloads R .
R . esimerkki File folder
ohjsuun_kurssika R R
. luennot_julkinen File folder
easimoln .
. luentokorvikel File folder
.=l Recent places R
- luentokorvike2 File folder
%5 Dropbox)
luentokorvike3 File folder
~SOhar5 Vuorovaikutus.pptx Microsoft PowerP...
«& Homegroup . _ B
[. ~SOharb YritysjarjestelmaPatternit.pptx Microsoft PowerP...
samuel
koneenchjaus.pptx 11.2.2014 18:00 Microsoft PowerP...
-) Ohar0 Aloitus.ppl Type: Microsoft PowerPoint Presentation Microsoft PowerP...
1% This PC Authors: samuel
Oharl Johdante.g - A . Microsoft PowerP...
4= Desktop Title: PowerPoint Presentation
B Oharl Johdanto.q Size: 29,2 KB Microsoft PowerP...
= ocuments e -
- [@%] Oharl Johdantoal Date modified: 11.2.20 Microsoft PowerP...
& Downloads :
g %] Ohar1_2_Johdanto.fbtx Microsoft PowerP...
¥ Inteno DG301AL L
B Musi @] Ohar2 Kuvaus.pptx Microsoft
usic
Pi @¥] Ohar2 Kuvaus_dokymentointi.pptx Microsoft
= ictures
é vid @Y Ohar2 Kuvaus_uudgmpi.pptx Microsoft
ideos
— . ¢ Ohar4 Komponentif.pptx [Repaired].pptx Microsoft
= Local Disk/(C:) - N R
%] Ohard Komponentif_bugaava_paskaexcel... Microsoft PowerP...
= vanhan_fevyn_va - . B :
%] Ohar5 Suunnittelurhallit.pptx Microsoft PowerP...
= 350GBAG:) - . :
R %] Ohar5 Vuorovaikutfis.pptx Microsoft PowerP...
= Rempvable Disk | v p= _)
A e v [N A annta s Ao
ile name: | [Tl T an T
ave as type: PowerPoint Presentation (*.ppty
Authors: Samuel Tags: Add atag Title: No Slide Title Subject: Specify the subject
Hide Folders Tools ~ Cancel
/ A
. . .
»
File dialog *» Tooltip
o .
e [extField > Button

ListBox

24.1.2024

a

= Tampereen yliopisto
Tampere University

Example

Open Close air

window conditioning
Air quality Window . Air conditioning

management management management

v

24.1.2024 11

a

= Tampereen yliopisto
Tampere University

Centralising dependencies: Mediator

i %
=

The control of interactions is centralised by limiting the
responsibilities of components and taking in use a new
component that is responsible for interaction management

Benefits:

 Interaction as its own whole (broker), can be changed
or tailored without changes to other components.

 Makes components independent of each other.

« Simplifies communication (one-to-many, not many-to-
many)

Problem: the centralised component may itself grow
complex.

24.1.2024 12

a

= Tampereen yliopisto
Tampere University

Example

Open window

Air quality
management

Window
management

Close air conditioning

Air conditioning
management

24.1.2024

13

a

= Tampereen yliopisto
Tampere University

Call forwarding (delegation)

Common basic mechanism in many

. Bimp
standard solutions

Actual executor
of the service opimp()

B

= IZD op B

op()
op() O
Different kinds of reasons: i
+ Side function not visible for the requester is wanted —
- Easy dynamical change of implementation is wanted imp.opimp(); J

« Call mode change is wanted
* Hiding the actual executor is wanted

24.1.2024 14

a

= Tampereen yliopisto
Tampere University

Call forwarding: example

Account
Manager

=l

Chargable

discount(int): int

@

Customer

=

CustomerSupport

discount(int): int

@

=

KeyCustomer

Support

Customer moves the request directly to KeyCustomer; AccountManager is not aware of this

24.1.2024

15

1) Tambers Unwersity
Choking dependencies: Facade

Facade

Subsystem Subsystem

24.1.2024 16

a

= Tampereen yliopisto
Tampere University

Facade (traditional, recorded)

Lecture
* Check the phone (silent mode)
« Open lecture room system, select lighting, source of display, etc.
* Log in lecture room computer
« Open Powerpoint, start display mode
« Remember to use the microphone (otherwise voice is not recorded)
« Wait for recording to start, then start lecturing
* Hold lecturing
* Mute the microphone
* Hold recording (if possible)
* Unmute the microphone
« Continue recording (if held)
« Continue lecturing
* End lecturing
* Mute the microphone, put it in charger

+ Stop recording (closes automatically, so don’t worry; publishing is done
automatically)

* Log out the computer
» Turn off lights, videos, etc.
* Phone to normal mode

With facade:

Start the lecture
Hold the lecture
Continue the lecture
End lecture

24.1.2024

17

a

= Tampereen yliopisto
Tampere University

Facade (online lecture)

Lecture With facade:

* Check the phone (silent mode)
Start the lecture

* Log in the lecturing computer
Hold the lecture

+ Sign in Zoom home page to get the host privilege
 Open Zoom, mute microphone and disable camera; open chat

Continue the lecture
End lecture

* Open Powerpoint, start display mode

* Wait until starting time

* Unmute, enable camera, start recording

* Share the Powerpoint

* Hold lecturing

* Mute the microphone, disable camera

* Hold recording

* Unmute the microphone, enable camera

+ Continue recording

» Continue lecturing

* End lecturing, stop sharing Powerpoint

* Mute the microphone, disable camera and stop recording
* End the session for all; recording is converted and saved on local computer
* Phone to normal mode

* Open Panopto. Upload the recording (takes some time).

* When recording is uploaded, close the connection. Panopto processes the
video (2-6 hours) and publish it.

24.1.2024 18

a

= Tampereen yliopisto
Tampere University

Facade pattern

Is used to give a subsystem a simple default interface, suitable for most of the users,
to perform higher level services that can connect several functionalities.

Facade does not completely hide the components of the subsystem from direct use.

Can be used in layered architecture to give each layer simple connection point and
interface.

Compare to broker: fagcade is a one-way service, typically facade only delivers the
calls to the correct component(s).

The use of fagade can be further restricted with roles (different facade for different
users).

24.1.2024

a

= Tampereen yliopisto
Tampere University

Example

registerStudent
removeStudent
getStudentinfo

StudyRegister

O—

StudentFacade

O—

StudentRegister

regStudentToCourse
removeStudentFromCourse

PaymentSystem

24.1.2024 20

a

= Tampereen yliopisto
Tampere University

Removing component dependencies
using proxy

Proxy: a component that represents another component in some context so that clients of the
component do not know about this. Typically the proxy makes some side functions when
fulfilling the service request.

op ‘ op Service
Client] PrOXy provider

v

24.1.2024 21

a

= Tampereen yliopisto
Tampere University

Applications

When direct connection to the resource is not wanted
Distributed systems

Delayed loading (e.g. object bases), partitioned loading.
Intelligent pointers

Security, authentication of clients

Smart proxy: smart selection of the service provider.

24.1.2024 22

a

= Tampereen yliopisto
Tampere University

Proxy pattern

Services

request()
=] e

Client

=] =]

Proxy Server

actual

actual.request() J -------------------- request()

24.1.2024 23

a

= Tampereen yliopisto
Tampere University

Different kinds of proxies, usages

Virtual proxy: delayed loading, etc. Works in-between and ensures that heavy operations
are not started in vain.

Protection proxy: the user can’t use the service or the resource directly, the proxy in-
between may contain e.g. authentication.

Remote proxy: usage of network resources through an interface, the proxy takes care of
connections (e.g. directs calls to correct places, gives additional security etc.)

24.1.2024 24

a

= Tampereen yliopisto
Tampere University

Proxy vs. Mediator vs. Broker

Proxy hides the service from its users

Mediator acts as a centralised connection manager.

Broker, as above, but conceptual difference. Resources are distributed, can alter the
location, etc.

 Broker knows where to find the services

« Can execute the services and return the results to the client or work as a
library: give a service

Brokers, proxies, adapters etc. cooperating.
Several brokers; may know each other

24.1.2024 25

a

= Tampereen yliopisto
Tampere University

Broker (service registering)

erver Broke

Initialize

-

Register service

Acknowledgement) Update repository

o S—

24.1.2024 26

a

= Tampereen yliopisto
Tampere University

Broker (deliver request)

Client
) Initialize

Send request

Reply

Broker Server
—

) Find server

Call server
» A
) Run service
Reply
|

24.1.2024

27

a

= Tampereen yliopisto
Tampere University

Removing dependencies using
callbacks

Callback: A call by the service provider to the service requester during the service
execution. It is a technique to allow the caller to get control in the middle of service.

Typically the service is part of a general library that shall not become dependent on
applications using the library.

Callback makes application-specific tailoring for a general service possible.

24.1.2024

a

= Tampereen yliopisto
Tampere University

Callback

library
A ;\k ~~~~~ :’/
service return
call

\\\caHback

Sequence chart:

callback

. Library : Application
J Service call
Eattback -
D Return
o Service 1
return

24.1.2024 29

a

= Tampereen yliopisto
Tampere University

Callback interface

Note: in real car system engine control etc. are separate systems than physical devices
(messaging through a bus).

Callback interface

Engine []/< General
P run() \

|f .(oinressure<Iimit) {
user.warn(); PowerSource

start()

stop() L

setUser(EngineUser) g Application specific

Car
______ _-setup() .-t~ log.output("Oil pressure low");
—————————————— warn(str) myeng.stop();

myeng = new Engine();
myeng.setUser(this);
myeng.start();

24.1.2024 30

a

= Tampereen yliopisto
Tampere University

With exceptions

=l

Differences:
* No callback interface

 Calling unit (Car) has to expect
exceptions.

Pros:
« Simpler.

* The library unit need not to know
anything about caller’s operations
(not even the callback interface).

Cons:

« The library unit can’t continue after
exce)ptlon handling (not needed

Engine
if (oilpressure<limit) { L ST
throw new Oilpressure(); ’ J; General
}
PowerSource
start() throws Oilpressure

stop()
setUser(EngineUser)

here).
g Application
Car specific

_- setup()
warn(str)

24.1.2024 31

a

= Tampereen yliopisto
Tampere University

Decreasing dependencies using
events

An event is a run-time data object of the program (in this context).
* It is created by a component,
 One or more components react to its creation.

It vanishes when there are no components that should react to its
creation.

The creator of an event does not know units reacting to the creation.

Events remove visible dependency, but if used incorrectly they don’t alter the

functional dependencies (understanding and modifying the behaviour can be even
harder).

24.1.2024

32

a

7] Tampereen yliopisto
Tampere University

Traditional call vs. Event

Service
caller

Service
provider

e

Event

Event creator

| -

e

/?'eacting to

event

-~

24.1.2024 33

a

Tampereen yliopisto
Tampere University

Events in user mterfaces

E—A Properties - ExplicitButton B [=] E3

font Abcde...

lahel |'°ress

estroy
disable
aaaaaaaa

enable — backaround | |

nnnnn I oK I foreground _

User’'s commands State changes

1

Application logic N

24.1.2024 34

a

="] Tampereen yliopisto
Tampere University

Synchronic callback-based event

handling
e

registering

Reacting Units

Synchronous =
The unit that caused the event Event notification
will wait event handling to

(callback)

complete before it continues.

24.1.2024 35

a

= Tampereen yliopisto
Tampere University

Observer pattern

Observer
update(Event)

5], O 5
L []
SourceComp obs @/src ObserverComp

Source

register(Observer)
unregister(Observer)

24.1.2024 36

a

= Tampereen yliopisto
Tampere University

Message-based communication
—

receive(Message m)

s Message J -

Component 1 - Component 2

Components implement generic receive interface (and use it either directly or through a broker).
Components communicate with each other sending messages
Message dispatcher takes care of message delivery.

24.1.2024 37

a

= Tampereen yliopisto
Tampere University

Interfaces vs. Messages

Components, func A(X. ..)

Client-server, |

Web services (SOA), implements Service
C++, Java c\S Interface |* Srovider

Reads and
implements

Service
requestor

Service
provider

Message
broker

\ Message

Message-passing architectures,
Service busses (ESB),

Smalltalk ACTION =22
PAR1 = X

The interface tells what is done and by which information, message can tell what ever (what is
done, who does, which information).

24.1.2024 38

a

= Tampereen yliopisto
Tampere University

Removing interface dependencies using adapters

Request made using interface A

v

" Adapter

Request made using interfaclze B
Component 1 Component 2

Adapter: program unit between the requester and provider of a service. Makes requester
independent of the provider’s interface.

24.1.2024 39

a

= Tampereen yliopisto
Tampere University

Adapter and events

Using adapters in event-based communication between components
Adapter fulfils observer interface

registering

service
call

Notify event

v

Adapter
Component A Component B

24.1.2024

a

= Tampereen yliopisto
Tampere University

Conclusions

Role interfaces give architecture that is more precise.

Using a broker concentrates on centralised interaction.

A Facade concentrates usage of subsystems.

Side functionality can be added by proxies.

Control is temporarily transferred back to the caller by callbacks.
Observer is a common solution for event-based interaction.
Message-based communication loosens ties.

Interfaces can be modified by adapters.

24.1.2024 41

a

= Tampereen yliopisto
Tampere University

Links and reading

A set of Java patterns:

About broker: Pattern-oriented Software architecture for dummies (chapter 12).
Mediator and message passing example Java Message Service

Mediator, simple example code:

Proxy pattern:

24.1.2024 42

http://www.java-forums.org/ocmjea/57996-tutorial-review-java-design-patterns-java-architect-exam.html
http://www.java-forums.org/ocmjea/57996-tutorial-review-java-design-patterns-java-architect-exam.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.oodesign.com/proxy-pattern.html

