
Large Scale Software Design
Architectural styles

Hannu-Matti Järvinen, David Hästbacka

Architectural styles
• Partitioning architectural styles

• Layer / tier architectures (partition by structure)
• Pipes and filters architecture (partition by functionality)

• Service-based architectural styles
• Client-server architectures
• Peer-to-peer
• Message-passing architectures (publish-subscribe)

• Special architectures
• MVC architectures
• Interpreter architectures

8.2.2024 3

What are architectural styles?
• Architectural style = a common model telling how the system is organised

on the highest abstraction layer. Defines the general technical nature of the
system.

• Architectural styles do not exclude each other!
• Question leading to a selection of an architectural style:

• Does the system consist of components on different conceptual levels?
• Is the process information the main purpose of the system?
• Does the system share information or resources with individual applications?
• Does the system consist of a set of components communicating with each other in

ways not know in advance? Do the components change often?

8.2.2024 4

Architectural styles and architectural patterns
• Pretty much the same thing (sometimes considered synonymous), but a little bit different

point of view.
• An architectural style is a conceptual way of how the system will be created / will work.
• An architectural pattern describes a solution for implementing a style at the level of

subsystems or modules and their relationships.

8.2.2024 | 5

Layer / tier architecture 1
• System is organised as layers with increasing abstraction levels.

8.2.2024 6

...

Tier Architecture 2
• Hierarchical layers

• Provide services to the upper
layers (e.g., hide the
heterogeneity)

• Use lower layers’ services
• In pure layer architectures,
service requests progress
from top to down

8.2.2024 7

Request Response

Breaking and bypassing abstraction layers

8.2.2024 8

Breaking abstraction levels

Bypassing

Upper layer use lower
layers to Implement
its functionality

Callbacks in tier architecture
• Callbacks can be used to break the idea of tier architecture without making

lower level dependent of the upper.

8.2.2024 9

Base layer

Application layer

normal
call

callback

Describing tier architectures: hamburger

8.2.2024 10

No bypassing

Bypassings

Bypassings

Interfaces of layers

8.2.2024 11

Layer A

Layer B

Comp1

Comp4

Comp2 Comp3

Comp6Comp5

Note: Facade

Callback
interface

Example: typical business system

8.2.2024 12

Data base

Application area specific logic

Application specific logic

User interface

Example cont.

8.2.2024 13

Example
cont.

8.2.2024 14

Layers and components

8.2.2024 15

Tier architecture can be multidimensional
(vertical)

8.2.2024 16

Support

Logic

GUICore
GUI

Core
Logic

Core
Support

Default
GUI

Default
Logic

Default
Support

App
GUI

App
Logic

App
Support

User interface

Basic services

Tier architecture can be
multidimensional (horizontal)

8.2.2024 17

Core
GUI

Core
Logic

Core
Support

Default
GUI

Default
Logic

Default
Support

App
GUI

App
Logic

App
Support

Core Default App

General
purpose

Product
specific

Domain – Company - Product

Dependency analysis of layers 1

8.2.2024 18

Row layer
depends on
layer in
column

P1 P2 P3 P4 P5

P1 X X

P2 X X

P3 X X

P4 X

P5

OK,
Bypass ratio
= 1

Dependency analysis of layers 2

8.2.2024 19

row
depends on
col

P1 P2 P3 P4 P5

P1 X X

P2 X

P3 X X X

P4 X

P5

Not OK,
What can be
done?

Change the positions
of P2
and P3, if P2 is not
clearly on higher
abstraction level.

Dependency analysis of layers 3

8.2.2024 20

row depends
on col

P1 P2 P3 P4 P5

P1 X X

P2 X X

P3 X X X

P4 X

P5

Not OK
What can be
done?

Combine P2 and
P3?

Dependency analysis of layers 4

8.2.2024 21

Layer P2

Layer P3

Comp1

Comp4

Comp2 Comp3

Comp6Comp5

Moving single componets

Move is OK, if
there are no
conceptual
conflicts

Dependency analysis of layers 5

8.2.2024 22

Layer P2

Layer P3

Comp1

Comp4

Comp2 Comp3

Comp6Comp5

Cannot be
exchanged

Exchanging components

Distribution of tier architecture

8.2.2024 23

• Tier architecture is easy to distribute
• Communication between layers by messages

• Two-tier architecture distributed:

Application
(PC)

Application
(mobile)

Application
(mobile)

Application
(PC)

Database server

Three tier architecture
• Common in web:

• Presentation layer / tier / front-end: part running in browser
• Application / logic layer: application level functionality, code (Ruby, Java, PHP, ASP, .NET, Perl,

...) executed by application server.
• Back end / Data tier: data base and management of data base, how to obtain stored data.

8.2.2024 24

The right place to distribute is not self-evident

8.2.2024 25

UI

Application

Data base

UI

Application

Data base

UI

Application

Data base

UI

Application

Data base

Client device

Server device

Request and Response

8.2.2024 26

• Request and Response behaviour

Client

Application
server

Request of
operation

Time

Waiting for response

Request of
Data Data

Example of three layers

8.2.2024 27

Pros and cons of tier architectures

8.2.2024 28

• Pros
• Applicable in most cases
• Support understanding and mastering of the system
• Decrease dependencies (maintenance, adaptability)
• Easy to connect with the organisation of the company (Conway)
• Support reuse (product framework)
• Distribute easily

• Cons
• Performance can be compromised (indirection)
• May lead to unnecessary or repeated computation
• Exception handling

New problem area

8.2.2024 29

• Separate,
independently
developed components.

• Both include some
functionalities, but
adapted to other
internal components.

• No reuse.
• Optimisation of

performance is difficult
internally.

• Adaptation is difficult

A1

B1

C

D

A2

B2

E

F

Call & inform.
from source 1

Call & inform.
from source 2

Pipes and filters architecture

8.2.2024 30

• Pipes and filters architecture consists of components (filter) that produce and
consume data items, and channels (pipes) that carry data items from
component to component.

filter

filter

filter filter

filter

pipe

pipe pipe

pipe

pipe

Special case: pipeline

8.2.2024 31

filter1 filter2 filter3
pipe pipe

Control implementation in pipelines: push type

8.2.2024 32

Control implementation in pipelines: pull type

8.2.2024 33

Typical points of pipes and filters architecture

8.2.2024 34

• Processing units are working independently (they don’t share state information)
• Processing units do not know each other, only the data format required by the

channels (pipes)
• The format does not need to be the same for between all filters

• Information can be processed piecewise.
• Units are stateless.

Example of pipes and filters

8.2.2024 35

Concurrent units: buffering

8.2.2024 36

• Each unit in its own process
• Slowest unit defines the total time
• The sizes of buffers are critical
• The buffer is typically a queue structure

filter filter

Buffer

Cont.

8.2.2024 37

Incoming
message

Message queue

filter, retrieves a
task from the
queue

Message fully
processed

Load balancing

8.2.2024 38

Example: one-pass compiler

8.2.2024 39

• Problem: context-aware processing of source code
• Solution:

• Data is gathered to a global symbol table
• Parser may act as the main program

Scanner
Parser,

semantic
analyser

Code
generation

Characters Lexical items Abstract
syntax tree

Code

Example: photoshop lightroom

8.2.2024 40

• The original picture is saved, the complete picture in the program is the original + operations
• A filter can be removed -> picture changes; exchange filters -> picture changes again
• Converting e.g. for net publishing or paper printing
• Ability to select the same operations for the whole picture library

focusing
Complete

picture
Colour
balance

...

Original
picture
data

Examples

8.2.2024 41

• Command lines (Unix, Linux), and piping of commands.
• Graphics (GPU computation) and tasks that can be parallelised.

Pros and cons of pipes and filters architecture

8.2.2024 42

• Pros
• Complex information handling process can be divided pieces that are easier to

handle.
• Supports reuse: process units can be combined in several ways
• Supports maintenance: processing unit can be easily changed.
• Supports concurrency and distribution.

• Cons
• Does not fit interactive systems (some exceptions like search engine)
• Information interpreting may cause performance problems
• Error handling may by difficult

Error handling

8.2.2024 43

• One possibility: a specific error flow, normal data and errors are separated (like Unix
command line)

• On error side own filter that acts accordingly.

Compilation with error handling

8.2.2024 44

Scanner Parser Semantic
analyser

Bytecode generator

Optimisation

Machine code
generator

Machine
code

Bytecode

Errors
+ + +

Service-based architecture styles: Objects
(1970’s)

8.2.2024 45

list

remove

add

object

Using
unit

Service-based architecture styles:
Components (1980’s)

8.2.2024 46

Hyphenation interface
Hyphenation
component of

the Finnish
language

Text
system

Service-based architecture styles: Client-
server (1990’s)

8.2.2024 47

Service
provider

Service
requestor

Service
requestor

network

Service-based architecture styles: Service-
Oriented Architecture (2000’s)

8.2.2024 48

Service
register

Service
provider

Service
requestor

registerAsk for service

Obtaining the service

E.g.. Web services

network

Service-based architecture styles: Enterprise
Service Bus, ESB

8.2.2024 49

• Applications offer their services through a bus
• Idea: message routing depends on the message -> there will not be

dependencies between applications

Bus

Adapter Adapter Adapter Adapter

Application Application Application Application

Spirit of SOA

8.2.2024 50

• Independent, independently maintained and managed components
• Composing software from these components
• No strict connections between components, using messages in communications
• Easy to distribute functions of components

Microservices

8.2.2024 51

• Variant of service-oriented architecture.
• Fine-grained services connected together with lightweight protocols.
• Improves modularity
• Easier to understand, develop and test
• Philosophy: “Do one thing and do it well”.

• Old Unix systems had this same idea, but the call structure was defined by the caller (a pipe)

Microservice definition

8.2.2024 52

No final consensus regarding the properties of microservices. The properties often include:
• Services are processes communicating with each other using light-weight protocols (HTTP).

However, other kinds of communication mechanisms are allowed (e.g. shared memory).
• Services might also run within the same process.
• Services should be independently deployable.
• Services are easy to replace.
• Services are organised around capabilities.
• Services can be implemented using different SW technologies (programming language,

database), hardware and software environment, depending on what fits best.
• Services are small in size, messaging enabled, bounded by contexts, autonomously

developed, independently deployable, decentralized, and built and released with automated
processes.

Microservices-based architecture, pros

8.2.2024 53

• Naturally enforces a modular structure.
• Lends itself to a continuous software development process.
• Provides characteristics that are beneficial to scalability.
• Each service is easy to test

Microservices-based architecture, cons

8.2.2024 54

• Services form information barriers.
• Inter-service calls over a network have a higher cost in terms of latency and message

processing time than in-process calls of a monolithic service process.
• Testing and deployment are more complicated.

• Testing a single service is not the problem but whole construction

• Moving responsibilities between services is difficult.
• Can lead to too many services when the alternative may lead to a simpler design.

Conclusions, part 1

8.2.2024 55

• Tier / layer architecture divides system on conceptual levels.
• Pipes and filters –architecture divides system by working phases.
• Service-oriented systems have been developed from object oriented programming

towards service bus solutions and cloud systems.

Client-server architectures

8.2.2024 56

• Client-server architecture: the system consists of servers controlling resources and providing
services and clients needing services.

Client-server architectures
• Services are available in sessions; services belonging together are controllably given

during a connection as transactions.
• Clients and servers execute in their own processes, typically distributed.
• Clients are typically applications that do not know each other.
• Servers do not know clients.
• Servers typically manage a resource or data storage.

8.2.2024 57

Examples
• Data storage servers
• Systems based on application servers
• Email programs (server – terminal program)
• Network application etc.

• Common solution, REST interfaces and users

• Most of the current applications and devices are (somehow) following client-server model.

8.2.2024 58

Data storage and application servers

8.2.2024 59

Database

Application area specific logic

Application specific logic

User interface

Database

Application area specific logic

Application specific logic

User interface

Client Client

Server

Server

Pros and cons of client-server architectures
• Pros:

• Eases controlling the common resource (security)
• Eases maintenance and adaptability (changing the server)
• Good technological support

• Cons:
• Performance problems due to network traffic
• Server-centric: sensible to failure on critical server
• Exception handling

8.2.2024 60

Peer to peer (P2P)
• Specialisation from client-server.
• Clients are also servers; equal = peers.
• Sharing resources, information, computing power, channel bandwidth, etc.
• Error-sensitiveness decreases, resource sharing makes it possible to solve

bigger problems.
• Hybrids exist: centralised server and with P2P connections between

clients.

8.2.2024 61

Peer-to-peer networks
• Peer-to-peer (P2P) network

• consists of autonomous peers
• is a self-organizing system,

• purpose: the usage of distributed resources
• avoiding centralised services.

• P2P is also used to hide the "culprit"
• In this course, we focus on technology (and legal usage)

62

Peer-to-peer Networks
• Three requirements for future Internet systems

• scalability
• security, and reliability
• flexibility, and the Quality of Service.

• C/S has some potential problems:
• Centralised server and its network traffic are bottlenecks.
• It is easy to attack against the server.

63

P2P: New paradigm
• P2P is not just file sharing.
• P2P is a new paradigm for distributed systems.

• coordination becomes co-operation
• centralised becomes decentralised
• participation provides incentives.

• P2P used to have a promising future

64

P2P application areas
• Storage capacity, file distribution systems and technologies (e.g. Torrent)
• Computing power, distributed execution, e.g. Bitcoin (Seti at home)
• Botnets
• Communication:

• Skype (old version), centralised server, voice with P2P
• Devices and machines communicating with each other.

8.2.2024 65

Client-server vs. Peer-to-peer

66

Client-Server Peer-to-peer
Centralised resources. Resources distributed to peers.

Clients communicate via the server. The peers communicate directly with
each other (but not necessarily directly
to the desired resource).

Clear roles between clients and
servers.

Peers operate in both user and
producer roles.

The communication network is a star,
the client knows the server address.

Communication connections directed
by an overlay network.

Overlay Networks
• The overlay network defines the communication links and addresses.

• Overlay network = the logical network built on another network (physical or overlay)

• Deterministic overlay network.
ÞStructured peer to peer network.

• Non-deterministic overlay network.
ÞUnstructured peer to peer network.

67

Unstructured P2P Networks
• Centralised

• The central entity is responsible
• for the addresses and the index.

• Pure P2P
• No central entity.

• Hybrid
• Dynamic central node.

68

Structured P2P networks
• Goals

• self-organising network
• content-addressable data store
• usually based on a decentralised hash table (DHT)
• a distributed, scalable and fault-tolerant directory
• search faster than in unstructured systems, typically O(log N).

69

Structured example: Chord
• The nodes form a ring.
• Every data item has an integer ID (key) k.
• Similarly, each node has id s.
• Each data element with key k is mapped to node s

• smallest s, s ≥ k (mod n)
• s = succ(k).

• When the application want to access data item k it calls function LOOKUP(k)
• This returns the node that manages k, i.e. the network address of node s.

70

Chord

71

7

5

3

1

2

6

4

0

12

11

10

9

8

13

1

9

10

3

2

5 76

Node s=1

Data k=1

Smallest s, s ≥ k (mod n)

16

Where is
16?

Chord
• Nodes know the other nodes.

• Search O(log (N)); N is the number of nodes.

• Joining the ring:
• Generate a random ID.
• Function LOOKUP(ID) is called.
• Register for node succ(ID) and its predecessor (node knows its predecessor and successor).
• Transfer the relevant data to yourself.

• At departure, the predecessor and the successor are informed.

72

Chord

73

7

5

3

1

2

6

4

0

12

11

10

9

8

13

1

9

10

3

2

5 76

Node s=1

Data k=1

Smallest s, s ≥ k (mod n)

16

New node

9

Optimisation

74

• Problem: Finding of the desired node may take a long time, because previous-successor chain
has to be followed.

• This can be improved by adding shortcuts to a finger table.
• In the table of node n, item i contains address of the node s = succ(n + 2i-1)

1 2 3 4 5 6 7 9 108 11 12 13 14 15 16

Challenges
• In P2P systems, the data is distributed across different nodes => there is need for an

efficient way of finding the data.
• Load balancing: load should be evenly spread between nodes.
• Decentralisation: no node may be more important or more critical than the others.
• Scalability: Adding capacity can simply be done by adding more nodes.
• Reliability: The information is always available.
• Flexibility, e.g., in terms of naming.

75

Finger Tables
www.cs.berkeley.edu/~kubitron/courses/cs294-4-F03/slides/lec03-
chord.ppt

76

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. succ.

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. succ.

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. succ.

keys
6

Finger tables

77

9

11

8
7

5

6

5 76

3

2

43

2

1
0

12

13

1

10 9

10

5 [5,6) 7
6 [6,8), 10
8 [8,12), 10
12 [12,20) 13

Distributed hash-table (DHT)
example: CAN (Content Addressable Network)

78

• N-dimensional coordinate system is
divided into zones.

• Hash key is a coordinate point in this
space.

• Each zone is managed by a node with
a coordinate.

• 2-dimensional example on the right.
• Adding dimensions shortens routes.

(0.2, 0.8)

(0.2, 0.3)

(0.6, 0.9)

(0.7, 0.2)

(0.9, 0.6)

(0.9, 0.9)

(0.0, 0.0)

(1.0, 1.0)

Centralised example: BitTorrent
• Centralised P2P file-sharing system.
• The name refers to the protocol, a peer or an official implementation of a peer.
• Peers of the system of peer download (and share) pieces of the file

• piece size is typically 256 kB
• piece is divided into 16 kB blocs.

• BitTorrent visualised: http://mg8.org/processing/bt.html

79

BT: Torrent
• Torrent defines a file-sharing session

• Torrents are independent
• Torrent is alive as long as it contains at least one copy of each piece of file.

• At first, the metadata file is requested from the Web server, i.e. Torrent. It includes
• The name and size of the file to be downloaded.
• SHA-1 fingerprints of the pieces.
• Address of the tracker server.

80

BT: Tracker
• Tracker is a centralised resource that helps the peers to find each other

• It keeps track of active nodes.
• Those nodes have parts of the desired file.

• When starting up, peers get a subset of active nodes.
• Standard algorithm returns a random set with a size of 50.

81

BitTorrent as an image

82

Client

Web
server

.torrent

Tracker

BT: Peer
• The client becomes active when it receives information from other peers.
• The peers copy pieces of file from each other.

• To be precise, pieces are further subdivided into blocks that are requested in such a way that
several requests are continuously in the queue.

• The integrity of parts is checked using fingerprint stored in .torrent file.

• Visualisation of Bittorrent: https://mg8.org/processing/bt.shtml

83

https://mg8.org/processing/bt.html

BT: Peer
• Peer sends its state to the tracker every 30 s.
• Peers send to the known peers data

• of the pieces they have and
• which pieces they want get.

• How to choose which block to download
• start-up: random first
• normal mode: the rarest first
• end game mode: all blocks are asked from all peers.

84

BT: Choking algorithm
• Choking is a temporary refusal to upload.

• The idea is to deal with free rides, i.e., those who only download but never upload.

• At most four peers of the interested set are not choked (unchoke).
• Interested peer is a peer that wants something from the current peer.

85

BT: Choking algorithm
• Unchoke is done in the following way:

• Regular unchoke: every 10 seconds set of interested peers is ordered according their
upload rate. Three fastest ones are unchoked.

• Optimistic unchoke: every 30 seconds one of the interested peers is unchoked
randomly.

• Without optimistic unchoke new peers could never get started.

86

Pros and cons of P2P

8.2.2024 87

• Pros:
• Fault tolerance
• sharing bandwidth and resources cause savings
• easy to share resources, scalability

• Cons:
• Security, safety
• level of service
• complex implementations (hybrid model)
• New technology has decreased its usefulness.

Message passing architectural styles
• Starting point

• System consists of components communication with each other, possible distributed
• Services of components are not known precisely in advance.
• Components and number of them are not known precisely in advance
• The quality of the information in systems is not known in advance

8.2.2024 88

Message-passing architecture: basic idea

8.2.2024 89

Message

3) Decide the recipient(s) and deliver the
message to it (them)

1) Create a message

4) receive

registered
components

Common interface of
components:
receive(Message)

Message broker

registered
components2) Send to broker

5) Interpret / process message

Interfaces vs. Messages

8.2.2024 90

• Interface defines what is done and on which information, message can tell
anything (what is done, who will do, which information)

Service
requestor

Interface

Message

Service
provider

implements

Palvelun
tarjoaja

reads
Service
provider

Message
broaker

Message passing
architectures,
Service busses (ESB)

Components,
Client-server,
Web servers (SOA),
C++, Java calls

writes

func A(X…)

ACTION = A
PAR1 = X

Examples
• Engine control systems
• IOT systems
• Multimodal systems, command-centric architectures
• Business management system of a company
• Generally: distributed systems, loosely-coupled systems

8.2.2024 91

Service-based message-passing architecture

8.2.2024 92

• The broker takes care that the result
is delivered to the correct
component

Client Broker Server

Service request Service request

Service resultService result

Example: Message bus in a car

8.2.2024 93

Engine control
Car computer

Gearbox

breaks

CAN bus (Controller Area Network)

Car wirings before bus

8.2.2024 94

With a bus

8.2.2024 95

Message passing and messages
• The contents or format of a message essential
• Instruction, data, …
• To who
• Components have ID, priorities based on id’s
• Possibility to have multiple busses: entertainment, vehicle control, comfort

8.2.2024 96

CAN bus

8.2.2024 97

History: simulation environment of embedded
software

8.2.2024 98

boiler
Bottom
valve

Process control
boiler
ctrl

heating

heater
sensor

Simulation control

Connector (output)

Connector (inpout)

device

process

pump

burner

History
• Internal implementation, broker in each process, devices register to a process (message

sources & receivers) – these tell of their existence to the control.
• Simulation control creates simulation environment, controls is (e.g. time management),

creates connections (according to simulation description)
• Message passing in all communication, messages.

8.2.2024 99

Defining message types & contents
• Message passing architectures à messages
• It is important to define the structure, contents, possible error handling etc. of the

messages.
• Different kinds of messages:

• Event messages
• Request – answer message,
• Command messages (remote procedure)
• Data messages (information delivery)

8.2.2024 100

Pros of message passing architectures
• Easy to change, add and remove components or applications.
• Fault tolerant (e.g. if there is no receiver for a message), the message can be sent

repeatedly
• Flexible system configuration
• Allows heterogenetic systems, application integration
• Allows both synchronic and asynchronic communication

8.2.2024 101

Cons of message passing architectures
• Performance: writing and reading messages
• More difficult to implement, test and understand than traditional
• Some ”ordinary” things need special support (e.g. returning the result, synchronisation)
• Implicit connections created easily between units; virtually independent components hard

to maintain and modify (especially if dependencies have not been documented)

8.2.2024 102

Model-View-Controller (MVC) architectural
styles 1
• Architectural solution for interactive systems separating the user interface from the

application logic.

8.2.2024 103

Model-View-Controller (MVC) architectural
styles 2
• Starting points:

• There should be possibility to offer different kinds of views from the state of the application.
• The user interface should immediately reflect the changes of the application state.
• The user interface should be easy to change
• It should be able to transfer the application to another graphical platform.

8.2.2024 104

Responsibilities
• Model

• Offers logical functions and information of the application
• Registers viewing components interested in the state of the application
• Informs state changes to registered components

• View
• Takes care of displaying the state on the display

• Control
• Reads user commands
• Changes the command to application functions

8.2.2024 105

MVC interaction

8.2.2024 106

Controller Model View

handle-
Event

service

notify

update display
getData

Execute functionality

Pros and cons of MVC
• Pros

• Easy to implement several views to the same data
• All views are automatically synchronised
• New views can be added to a running system
• The layout of the interface can be changed with relative ease

• Cons
• Possibly unnecessary requests to update the view
• Metadata inquiries may increase execution time
• For simple applications a lot of extra work

8.2.2024 107

Interpreter architectural styles
• The need to give functional descriptions as input to the system. Examples:

• Need do combine primitive functions in different ways that are not known in advance.
• Need to separate a logical, abstract execution platform from concrete one (e.g. to make

it easier to change the latter one)

8.2.2024 108

Basic ideas of interpreter architectural style

8.2.2024 109

Any functional
description
(text, XML, graphical,
etc.)

interpreter

input

output

Concreate execution
platform

Definition of the
language

follows

Internal representation of
functional description

calls

implementation

Example: Java

8.2.2024 110

Java program JVM

Program
input

Program
output

Definition of Java

follows

Internal representation of
functional description

calls

bytecode

Execution platform
(C environment)

implementation

translation

(C-prog)

Example: Spreadsheet

8.2.2024 111

Spreadsheet script Script
interpreter

Value of a
spreadsheet item

Spreadsheet
computing

Definition script
language

follows
implementation

Int. repr.

Example: SQL

8.2.2024 112

SQL inquiry SQL
interpreter

Results

Database

Application

DBMS

Example: Interpreted DSL (Domain specific
language)

8.2.2024 113

Application description in
DSL interpreter

input

output

API

Definition of
DSL

follows

Internal representation of
functional description

calls platform

implementation

Example: Modifiable games

8.2.2024 114

Game data,
Functional scripts

Script
interpreter

Game engine

Definition and data types of
script language

Hack-hack implementation

Int. repr.

Modifying games and extensions
• Skyrim: http://www.creationkit.com/Main_Page

• Tools for creating maps, persons, stories, etc.
• Papyrus scripts
• Also Fallout 3 / New Vegas, Oblivion

• Medieval Total War 2:
http://medieval2.heavengames.com/m2tw/mod_portal/tutorials/index.shtml
• Definition of troops and building by text files.

• Civilization 5: http://modiki.civfanatics.com/index.php/Main_Page
• XML, Lua scripts

8.2.2024 115

http://www.creationkit.com/Main_Page
http://medieval2.heavengames.com/m2tw/mod_portal/tutorials/index.shtml
http://modiki.civfanatics.com/index.php/Main_Page

Notes
• Defining an own language and implementing an interpreter system is not always the most

sensible alternative. Always check if any existing one would do.

8.2.2024 116

Pros and cons of interpreter architectural style
• Pros

• Run-time logical execution environment in own control
• The language to be interpreted relatively easy to change
• The semantics of the language relatively easy to change
• Underlying environment can be easily changed

• Cons
• Performance (indirect, not-native executions; forming internal representation)
• Memory usage (internal representation may require a lot of room)
• Implementation and designing of interpreter part: laborous, demanding (forecasting the

future)

8.2.2024 117

Middleware and architecture styles
• Many, such as Corba and Java RMI, are based on the object-oriented architecture.
• There are also event-based

• TIB (The Information Bus) / Rendezvous
• DBUS in Linux.

• JXTA is one of the peer to peer intermediate layers.

118

”Self-managing systems”
• Usually based on some kind of feedback loop
• Three examples

• Astrolabe: monitor system
• Globule: Content delivery network (CDN)
• Jade: automatic replacement of faulty components

119

Astrolabe: Zones and Agents

120

Host

Zone

Host

Zone

Host

Zone

Host

Zone

Host

Zone

Host

Zone
Agent

Astrolabe: aggregating data

121

Host

Zone

Host

Zone

load mem procs
0.2 100 42

load mem procs
0.3 300 62

load mem procs
0.25 100 104

Globule: Data closer to the user
Example of CDN

122

ISP

Enterprise
network

Optimisation problem:
when to transfer?

Jade: automatic replacement of faulty components
Fractal componet system

123

Node

Client Client Client

Client interface

Server interface

Binding

Node

Client Client Client

Node

Conclusions
• Architecture – Domain know-how + technical know-how
• Domain know-how ~ domain model
• Technical know-how ~ architectural styles, patterns, general good practices

8.2.2024 124

