
Large Scale Software
Design
Components

24.1.2024 2

Components and interfaces
Idea of components: rationalising software engineering
What is a software component?
Components as software units
Interfaces
Tailoring components
Conclusions

24.1.2024 3

Rationalising software engineering
Building products out of components

• Products will be more reliable
• Products are easier to make
• Makers are easier to educate
• Component markets and competition decreases prices

Applied almost all areas of technology

24.1.2024 4

Applications made of components
Visio: the application is composed from existing components using parameters and
defining connections.
Tools: scripts, XML, visual tools

Example: Process automation (Valmet)

24.1.2024 5

24.1.2024 6

What is a software component?
Component = independent software unit giving services through well-defined interface.
Szyperski:
A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

24.1.2024 7

Properties of components
Level of independency

• Component typically assume run-time support of given infrastructure
• Component can assume given service environment (required interfaces)

Ways to introduce
• Can be introduced during development process, linking time, starting time or

during usage (source code or binary).
Size

• Varies from an object to an subsystem
Standardisation

• Standardisation of interface in application area, standardisation of infrastucture.
Technology-specific properties

• Metadata

24.1.2024 8

Challengers of components
How is the component implemented?
How is the component interface described?
How to ensure that the component corresponds with its interface, keeps its promises?
How to maintain system made of components?

24.1.2024 9

Challengers continues...
How to combine components, form bigger bodies?

• Problems of combining components
• Types, parameters
• Functionality
• Concurrency, timing
• Using of resources
• Security
• Safety

24.1.2024 10

Components as software units
Basic unit of architecture. Unit of:

• Functionality – what part is responsible on given functionality?
• Reuse – which parts are common in different products?
• Product configuration – which parts belong to the product?
• Introduction – which parts can be utilised separately?
• Adaptability – which parts can be substituted?
• External development – which parts can be obtained elsewhere?
• Task division – which parts are produced by given persons or units?

24.1.2024 11

Component-based systems
Firefox, plug-ins and add-ons as components

• Strictly defined interface between Firefox and plugin (does not need
information about internal structures of Firefox)

• Separated components: failing plugin does not crash Firefox or other
plugins.

Linux and drivers
Bus-based embedded systems

• E.g. Cars (CAN)

24.1.2024 12

Example of component use
Scintilla (http://www.scintilla.org/)

• Text editor component, suitable especially for source code editing
• Free
• Geany, Komodo, Notepad++, Notepad2, Programmers Notepa,

MySQLWorkbench
• Wrappers: .NET, Qt, wxWidgets

Documentation examples: http://www.scintilla.org/ScintillaDoc.html

http://www.scintilla.org/
http://www.scintilla.org/ScintillaDoc.html

24.1.2024 13

Interfaces
Component / interface concept evolution to object paradigm

• Subprograms: abstraction of functionality
• Modules: hiding information
• Classes: extendable modules
• Abstract classes: classed without implementation
• Multiple inheritance: several abstractions in one implementation
• Components: different interfaces

Subroutines: abstraction of functionality

24.1.2024 14

A

B

C

How to call the service
(signature)

Implementation
of service

subroutine
library

call

call

call

Modules: hiding information

24.1.2024 15

A

B

C

interface

Data structures

call

M

E.g. Ada
programming
language

Classes: extendable modules

24.1.2024 16

A

B

C

T1
M1

D

E

F

T2
M2

D

E

F

T2

A

B

C

T1
M2

M2 contains also
M1 part:

Abstract base classes:
classes without implementation

24.1.2024 17

M1

D

E

F

T2
M2

D

E

F

T2
M2

No
implementation

Multiple inheritance: several
abstractions in one implementation

24.1.2024 18

M1

D

E

F

T2
M2

No
implementation

M0

No
implementation

Components: separate interfaces

24.1.2024 19

M1

D

E

F

T2
M2

Interfaces as separate software units

24.1.2024 20

Component
A

Component
B

Interface 1

Interface 2

Interface 3

Interface 4

Components and UML

24.1.2024 21

<<component>> –stereotype Using component symbol

Component before UML 2, still OK

24.1.2024 22

Provided and required interfaces
Component may have two different relationships with an interface:
Interface provided by the component

• The component provides the services of the interface
Interface required by the component

• The component needs the services of the interface.

Provided and required interfaces in UML
2.x

24.1.2024 23

Car

Engine

PowerSource

PowerSource

Required interface

Provided interface

Ports in UML 2.x

Port is a contact point enabling interaction between a component and its environment
On left, the warning is sent somewhere, on right, it is sent to the same component that used
PowerSource

24.1.2024 24

Engine

PowerSource

Warnings

Engine

PowerSource

Warnings

host

Port

Contract-base design of interfaces

Pre and post conditions
• Define the meaning of

service
• Allow changing of

participants, if conditions hold
• Define responsibilities between

participants
• Service provider either fulfils the contract

or causes an exception

24.1.2024 25

service
caller

Service
provider

Service interface

Post condition: must hold when the service is
completed assuming that the pre conditions were
valid when called.

Pre condition: must hold
when the sercive is called

design-by-contract

Inheritance and pre and
post conditions

• Correct alternative? A, B, C, D or
F?

24.1.2024 26

public oper(...)
pre
post

public oper(...)
pre'
post'

pre post

pre' post'

pre' post'

pre post

pre post'

pre' post

pre' post

pre post'

A

B

C

D

Pre and post conditions of the subclass have to be identical
to the ones of the base class.

F

24.1.2024 27

Tailoring components
Changing the initial state of a component
Providing or changing the implementation of required interfaces
Subclassing.

Changing the initial state of a
component

The component’s user sets the initial state
before use.

24.1.2024 28

Comp

ServicesI
setProperty(...)

:CompClient

create

setProperty(...)

use

Providing or changing the implementation of
required interfaces (dependency injection)

Service used by the component is changed either in
development or run time (static or dynamic)

24.1.2024 29

Button AppLogic

ActionListener

XLogic

ActionListener

Tailoring one operation

One operation is concerned
Can be changed in run time

24.1.2024 30

Button

display

…
display
… CompanyBorder

borderDrawing

borderDrawing

…
brd.borderDrawing(…);
…

BorderStrategy

Strategy pattern

Note: only one operation in the interface.

24.1.2024 31

operation

…
operation
… StrategyA

part()

part()

…
str.part(…);
…

StrategyInterface

Host

Subclassing
Component class is specialised to meet
application needs using subclassing (static
tailoring).

24.1.2024 32

Button

CompanyButton

Fragile base class problem

24.1.2024 33

Tailored
component

“Innocent" change to original
component may cause
an inoperative tailored

component

Comp

Custom

Library
component

Fragile base class problem

Example 1: original list

24.1.2024 34

List

CountedList

addContainer:
{ ...addElement(...); ... }

addElement:
{ super.addElement(...);
 counter++; }

addElement(Object)
addContainer(Container)

<<interface>>
Container

getCount()

<<interface>>
CountedContainer

Example 2: new list

24.1.2024 35

List

CountedList

addContainer:
{ ...}

addElement:
{ super.addElement(...);
 counter++; }

addElement(Object)
addContainer(Container)

<<interface>>
Container

getCount()

<<interface>>
CountedContainer

addElement is not
called any more!

24.1.2024 36

Disadvantages
Problem of fragile base class: it may be risky to inherit the component.
Licensing problems (open source vs. commercial)
Changing interface may break components using the interface.
It is hard to obtain changes to components, even if the interface is not changed.

• Changing the system is not agile.

24.1.2024 37

Conclusions
Components are basic units of architecture that are connected to each other by provided
and required interfaces.
Interfaces should define not only the calling mode but agreement of the usage of the
interface (pre- and post-conditions).
Components can be tailored by changing its initial state, changing the components
connected to its required interfaces or by inheriting a new specialised component

