
Many consts

4.12.2018

• Immutable ”variables”
• Compile-time constants: int array[MAX];

• Normally inside a compilation unit
• Usually in header files

3.10.2018 2

const – constants

const – primitive types

int const STR_MAX = 30000;
double const PI = 3.14159265;
int const LIMIT = getLimit();
char str[STR_MAX];

3.10.2018 3

Constant objects
• Objects can be made constants in the same

way as variables:
Date const christmas(24,12,1999);

• What does a constant object mean?
• Assignment?

3.10.2018 4

Constant objects
• The state of the object cannot be changed
• Two kinds of member functions: “changeable”

functions & constant functions
• Two interfaces
• The specifier of constant member functions

(const) after the parameter list
3.10.2018 5

Date class

3.10.2018 6

class Date {
public:

Date(unsigned int d, unsigned int m,
unsigned int y);

~Date();

void setDay(unsigned int day);
void setMonth(unsigned int month);
void setYear(unsigned int year);

unsigned int getDay() const;
unsigned int getMonth() const;
unsigned int getYear() const;

void proceed(int n);
int howFarAhead(Date const& d) const;

private:
unsigned int

day_;
unsigned int

month_;
unsigned int

year_;
};

Date class
void Date::setDay(unsigned int day)
{

day_ = day;
}

unsigned int Date::getDay() const
{

return day_;
}

3.10.2018 7

Compiler checks for const

• Restrictions in the code of constant member
functions
– Member variables
– Member functions
– this

3.10.2018 8

Compiler checks for const

• State of an object = member variables?
• State of an object ⊂ member variables?
• State of an object ⊃ member variables?

3.10.2018 9

Constant references and
pointers
• Constant objects are unusual, change is

typical for objects
• Constant reference: Date const& d;
• Constant pointer: char const* str;
• (Pointer as a constant: char* const str;)

3.10.2018 10

Constant references and
pointers

• Object/variable referred/pointed by a
reference/pointer behaves like a constant

• It is possible to restrict the interface of a non-
constant object to a constant

3.10.2018 11

Constant references and
pointers
• Documentation means
• Protection mechanism

void changeAnyway(Date const& d) {
d.setDay(1); // COMPILATION ERROR:

// setDay not a constant member
function
}

3.10.2018 12

Conversion to constants but
not vice versa
• C++ has implicit type conversion:

normal pointer → constant pointer
• C++ has not implicit type conversion:

constant pointer → normal pointer

char* str = “Use string class instead of char*";
char const* const_str = str; // Ok: non-constant → constant
char* str2 = const_str; // COMPILATION ERROR: constant →
non-constant

3.10.2018 13

The importance of const
specifier
• Added compiler checks
• Documentation means
• Constant objects can be pointed/referenced only

by constant pointers/references
• One missing const → using the others

becomes problematic

3.10.2018 14

Error chain
with const#include “date.hh"

bool hasLeapDay(Date* date_p);

bool affordsSkirt(Date const& now)
{ // A month has a leap day if the month is February and the year
is a leap year

if (now.getMonth() != 2) {
return false; // Not February

}
else {

return hasLeapDay(&now); // COMPILATION ERROR
}

}
3.10.2018 15

