Memory management and
object ownership

Smart pointers

(

I) Tampereen yliopisto
Tampere University

Object lifetime

*Objects are complicated = creation and deletion
may require special actions

Static vs. dynamic lifetime

29.9.2019 1

ampereen yliopisto
Tampere University

Ownership

*Object is always owned
by a program structure
or by another object

*Owner is responsible to
delete the object
(created dynamically)

Interfaces and passing objects
*Modules/objects call each other via
encapsulated interfaces

*Calls pass objects from place to place

*|t is a good thing, if the ownership

(= responsibility to delete) of an object remains
always in the same place

(

I) Tampereen yliopisto
Tampere University

Interfaces and passing objects

However, it Is usually necessary to create an
object in one side of an interface and to delete it
iIn another side = ownership of the object moves

across the interface

Movement must be written in the interface
documentation!

29.9.2019 4

Ownership

*Ownership documentation is important:
*Responsibility of object deletion
*Required dispose actions

* Automatic garbage collection (e.g. Python) takes care
of the first one (of above) but not the latter one

«C++ has not (yet) garbage collection, but the
destructor takes care of dispose actions when an
object is deleted

29.9.2019 5

Ownership: deletion

* Programmer is responsible to delete an object
that has been created by new command

« C++11 provides smart pointers to manage
ownerships:
« std::shared_ptr
« std::weak_ptr
« std::unique_ptr

(

= Tampereen yliopisto
Tampere University

Structure
documentation

Organism
{abstract}

reproduce() {abstract}

L}

Fungus
{abstract}

decompose() {abstract}

JZAN

Animal
{abstract}

4&

<<interface>>
Movable

move() {abstract}

[|
SlimeMould Mammal Bird | {> <<interface>>
{abstract} {abstract} {abstract} Oviparous
reproduce() breastfeed() {abstract} sing() {abstract} layEgg() {abstract}
decompose() layEgg()
move() 4 4;
| [|
Platypus Human Hen Nightingale
vevable duce() Guce() duce() duce()
reproduce reproduce reproduce reproduce
_ move() move() sing() sing()
Oviparous | jyreastfeed() breastfeed() move() move()
layEgg()

29.9.2019

(

~ ") Tampereen yliopisto
e

Tampere University

Ownership documentation
*UML has different associations (bi-directional,
aggregation, composition, ...)

*Associations have effects on the ownership
relations among objects

>) ¢ <

Association Association: . .
Composition Aggregation

Uni-directional

29.9.2019 8

Ownership documentation

Nowadays C++ has several ways to refer to an
object (reference, pointer, automatic pointer,
shared pointer, weak pointer)

= These choices can be used to document the
design decisions of UML. In addition, the
reference type supports the implementation of
the association in question. How clever!

(

= Tampereen yliopisto
Tampere University

(Smart ?!) pointers

Fig: DwarfVader (CC BY-NC-ND 2.0)

29.9.2019 10

= D Tampereen yliopisto
Tampere University

Ownership documentation in C++

Reference (&)
*No ownership, cannot be NULL (0)

* Target remains the same during the lifetime of a
reference

*Not suitable for an element of STL containers
(Assignable)

Pointer ()
*No ownership (or ownership management by hand)
*Suitable for an element of STL containers (Assignable)

2992019 11

(

I) Tampereen yliopisto
Tampere University

Ownership and smart pointers

Shared ownership
*Several objects can own the same resource

*Resource does not depend on the lifetime of a
single object

Unique ownership
*One object owns a resource

2992019 12

Shared pointer std: : shared_ptr

«Smart pointer with a reference counter: shared
ownership between several shared pointers

*Resources will be released, when the reference
counter is 0

Last shared pointer destroys the resource

*Be careful with cycles!

Created as std: :make_shared<X>(...)

(

7] Tampereen yliopisto
Tampere University

Shared pointer std: : shared_ptr

Fig: Herb Sutter

strong
S EEE
auto sp1 = make_shared<widget>(...);

ﬂ auto sp2 = sp1;

shared_ptrs

Others:
« Raw pointer: spw.get (), (no release)
» To find out sharing situation: use_count(), unique()

2992019 14

(

= Tampereen yliopisto
Tampere University

Shared_ptr: using get()

void output(const std::string& msg, intx pInt) {
std::cout << msg << xpInt << std::endl;

int main() {
intx pInt = new int(42);
std::shared_ptr<int> pShared = make_shared<int>(42);
output(“Raw pointer “, pInt);
// output(“Shared pointer “, pShared); // compiler error
output(“Shared pointer with get() “, pShared.get());

delete pInt; .
. g. Raw pointer 42
return 0; Shared pointer with get() 42

} 2092019 15

C 7] Tampereen yliopisto
Tampere Universit

Weak pointer std: :weak_ptr
*|ndicates an interest to a shared object, not strong
enough to keep the object alive

*Useful for breaking cycles of shared pointers

*Useful for checking, if the object has already been
destroyed

C 7] Tampereen yliopisto
Tampere Universit

Weak pointer std: :weak_ptr

Last shared pointer deletes the referenced object,
although there are weak pointers left
(wp.expired())

*Cannot access the referenced object directly, but
produces a shared pointer (wp.lock())

Unique pointer std: :unique_ptr

*Unique ownership

*As cheap as a usual pointer (no reference
counters)

*Ownership can be moved or released explicitly
(original becomes empty)

*Creating an object pointed by a unique pointer
(C++14): std: :make_unique<X>(...)

(

I) Tampereen yliopisto
Tampere University

Unique pointer example

std::unique_ptr<Thing> pl;

itd::unique_ptr<Thing> p2 (std::make_unique<Thing>(..)

// pl = p2; // Error! Can’t copy
unique ptr

pl = std::move(p2); // p2.get() == nullptr
Thingx tp = pl.release(); // pl.get() == nullptr

pl.reset(new Thing(..)); // pl.get() '= nullptr

2992019 19

(

I) Tampereen yliopisto
Tampere University

Function pointers

*Passing functionality as parameter

function cannot be passed as a parameter, but a
pointer to a function can be passed

*e.g. to STL algorithms (and associative
containers)

*Another way: function objects

2992019 20

(

= Tampereen yliopisto
Tampere University

Function pointers

bool isLessThan5(int i) {
return 1 < 5;

}

void printLessThan5(vector<int> const& v) {
vector<int>::const_iterator i = v.begin();
while((i = find_if(i, v.end(), &isLessThan5)) !'= v.end()) {
cout << *x1 << * '3
++1;
5

cout << endl;

2992019 21

