
Memory management and 
object ownership

Smart pointers



Object lifetime
•Objects are complicated ⇒ creation and deletion 
may require special actions

•Static vs. dynamic lifetime
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Ownership
•Object is always owned 
by a program structure 
or by another object

•Owner is responsible to 
delete the object 
(created dynamically)
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Fig: Kyle Luce’s blog



Interfaces and passing objects
•Modules/objects call each other via 
encapsulated interfaces

•Calls pass objects from place to place
•It is a good thing, if the ownership                      
(= responsibility to delete) of an object remains 
always in the same place
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Interfaces and passing objects
•However, it is usually necessary to create an 
object in one side of an interface and to delete it 
in another side ⇒ ownership of the object moves 
across the interface

•Movement must be written in the interface 
documentation!
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Ownership
•Ownership documentation is important:

•Responsibility of object deletion
•Required dispose actions

•Automatic garbage collection (e.g. Python) takes care 
of the first one (of above) but not the latter one

•C++ has not (yet) garbage collection, but the 
destructor takes care of dispose actions when an 
object is deleted 
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Ownership: deletion
• Programmer is responsible to delete an object 

that has been created by new command
• C++11 provides smart pointers to manage 

ownerships: 
• std::shared_ptr
• std::weak_ptr
• std::unique_ptr
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Structure
documentation
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Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

<<interface>>
Movable

move() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

<<interface>>
Oviparous

layEgg() {abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Movable

Oviparous

Hen

reproduce()
sing()
move()



Ownership documentation
•UML has different associations (bi-directional, 
aggregation, composition, ...)

•Associations have effects on the ownership 
relations among objects
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Association Association:
Uni-directional Composition Aggregation



Ownership documentation
•Nowadays C++ has several ways to refer to an 
object (reference, pointer, automatic pointer, 
shared pointer, weak pointer)
⇒ These choices can be used to document the 
design decisions of UML. In addition, the 
reference type supports the implementation of 
the association in question. How clever!
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(Smart ?!) pointers
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Fig: DwarfVader (CC BY-NC-ND 2.0)



Ownership documentation in C++
Reference (&)
•No ownership, cannot be NULL (0)
•Target remains the same during the lifetime of a 
reference

•Not suitable for an element of STL containers 
(Assignable)

Pointer (*)
•No ownership (or ownership management by hand)
•Suitable for an element of STL containers (Assignable)
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Ownership and smart pointers
Shared ownership
•Several objects can own the same resource
•Resource does not depend on the lifetime of a 
single object

Unique ownership
•One object owns a resource

29.9.2019 12



Shared pointer std::shared_ptr
•Smart pointer with a reference counter: shared 
ownership between several shared pointers

•Resources will be released, when the reference 
counter is 0
•Last shared pointer destroys the resource
•Be careful with cycles!
•Created as std::make_shared<X>(...)
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Shared pointer std::shared_ptr
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Fig: Herb Sutter

Others:
• Raw pointer: spw.get(), (no release)
• To find out sharing situation: use_count(), unique()

auto sp1 = make_shared<widget>(…);
auto sp2 = sp1;



Shared_ptr: using get()
void output(const std::string& msg, int* pInt) {

std::cout << msg << *pInt << std::endl;
}

int main() {
int* pInt = new int(42);
std::shared_ptr<int> pShared = make_shared<int>(42);
output(“Raw pointer “, pInt);
// output(“Shared pointer “, pShared); // compiler error
output(“Shared pointer with get() “, pShared.get());
delete pInt;
return 0;
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Raw pointer 42
Shared pointer with get() 42



Weak pointer std::weak_ptr
•Indicates an interest to a shared object, not strong 
enough to keep the object alive

•Useful for breaking cycles of shared pointers
•Useful for checking, if the object has already been 
destroyed
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Weak pointer std::weak_ptr
•Last shared pointer deletes the referenced object, 
although there are weak pointers left 
(wp.expired())

•Cannot access the referenced object directly, but 
produces a shared pointer (wp.lock())
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Unique pointer std::unique_ptr
•Unique ownership
•As cheap as a usual pointer (no reference 
counters)

•Ownership can be moved or released explicitly 
(original becomes empty)

•Creating an object pointed by a unique pointer 
(C++14): std::make_unique<X>(...)
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Unique pointer example
std::unique_ptr<Thing> p1;
std::unique_ptr<Thing> p2 (std::make_unique<Thing>(…) 
);
// p1 = p2; // Error! Can’t copy 
unique ptr
p1 = std::move(p2); // p2.get() == nullptr
Thing* tp = p1.release(); // p1.get() == nullptr
…
p1.reset(new Thing(…)); // p1.get() != nullptr
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Function pointers
•Passing functionality as parameter

•function cannot be passed as a parameter, but a 
pointer to a function can be passed

•e.g. to STL algorithms (and associative 
containers)

•Another way: function objects
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Function pointers
bool isLessThan5(int i) {

return i < 5;
}

void printLessThan5(vector<int> const& v) {
vector<int>::const_iterator i = v.begin();
while( (i = find_if(i, v.end(), &isLessThan5) ) != v.end() ) {

cout << *i << ‘ ‘;
++i;

}
cout << endl;

}
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