
Memory management and
object ownership

Smart pointers

Object lifetime
•Objects are complicated ⇒ creation and deletion
may require special actions

•Static vs. dynamic lifetime

29.9.2019 1

Ownership
•Object is always owned
by a program structure
or by another object

•Owner is responsible to
delete the object
(created dynamically)

29.9.2019 2

Fig: Kyle Luce’s blog

Interfaces and passing objects
•Modules/objects call each other via
encapsulated interfaces

•Calls pass objects from place to place
•It is a good thing, if the ownership
(= responsibility to delete) of an object remains
always in the same place

29.9.2019 3

Interfaces and passing objects
•However, it is usually necessary to create an
object in one side of an interface and to delete it
in another side ⇒ ownership of the object moves
across the interface

•Movement must be written in the interface
documentation!

29.9.2019 4

Ownership
•Ownership documentation is important:

•Responsibility of object deletion
•Required dispose actions

•Automatic garbage collection (e.g. Python) takes care
of the first one (of above) but not the latter one

•C++ has not (yet) garbage collection, but the
destructor takes care of dispose actions when an
object is deleted

29.9.2019 5

Ownership: deletion
• Programmer is responsible to delete an object

that has been created by new command
• C++11 provides smart pointers to manage

ownerships:
• std::shared_ptr
• std::weak_ptr
• std::unique_ptr

29.9.2019 6

Structure
documentation

29.9.2019 7

Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

<<interface>>
Movable

move() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

<<interface>>
Oviparous

layEgg() {abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Movable

Oviparous

Hen

reproduce()
sing()
move()

Ownership documentation
•UML has different associations (bi-directional,
aggregation, composition, ...)

•Associations have effects on the ownership
relations among objects

29.9.2019 8

Association Association:
Uni-directional Composition Aggregation

Ownership documentation
•Nowadays C++ has several ways to refer to an
object (reference, pointer, automatic pointer,
shared pointer, weak pointer)
⇒ These choices can be used to document the
design decisions of UML. In addition, the
reference type supports the implementation of
the association in question. How clever!

29.9.2019 9

(Smart ?!) pointers

29.9.2019 10
Fig: DwarfVader (CC BY-NC-ND 2.0)

Ownership documentation in C++
Reference (&)
•No ownership, cannot be NULL (0)
•Target remains the same during the lifetime of a
reference

•Not suitable for an element of STL containers
(Assignable)

Pointer (*)
•No ownership (or ownership management by hand)
•Suitable for an element of STL containers (Assignable)

29.9.2019 11

Ownership and smart pointers
Shared ownership
•Several objects can own the same resource
•Resource does not depend on the lifetime of a
single object

Unique ownership
•One object owns a resource

29.9.2019 12

Shared pointer std::shared_ptr
•Smart pointer with a reference counter: shared
ownership between several shared pointers

•Resources will be released, when the reference
counter is 0
•Last shared pointer destroys the resource
•Be careful with cycles!
•Created as std::make_shared<X>(...)

29.9.2019 13

Shared pointer std::shared_ptr

29.9.2019 14

Fig: Herb Sutter

Others:
• Raw pointer: spw.get(), (no release)
• To find out sharing situation: use_count(), unique()

auto sp1 = make_shared<widget>(…);
auto sp2 = sp1;

Shared_ptr: using get()
void output(const std::string& msg, int* pInt) {

std::cout << msg << *pInt << std::endl;
}

int main() {
int* pInt = new int(42);
std::shared_ptr<int> pShared = make_shared<int>(42);
output(“Raw pointer “, pInt);
// output(“Shared pointer “, pShared); // compiler error
output(“Shared pointer with get() “, pShared.get());
delete pInt;
return 0;

} 29.9.2019 15

Raw pointer 42
Shared pointer with get() 42

Weak pointer std::weak_ptr
•Indicates an interest to a shared object, not strong
enough to keep the object alive

•Useful for breaking cycles of shared pointers
•Useful for checking, if the object has already been
destroyed

29.9.2019 16

Weak pointer std::weak_ptr
•Last shared pointer deletes the referenced object,
although there are weak pointers left
(wp.expired())

•Cannot access the referenced object directly, but
produces a shared pointer (wp.lock())

29.9.2019 17

Unique pointer std::unique_ptr
•Unique ownership
•As cheap as a usual pointer (no reference
counters)

•Ownership can be moved or released explicitly
(original becomes empty)

•Creating an object pointed by a unique pointer
(C++14): std::make_unique<X>(...)

29.9.2019 18

Unique pointer example
std::unique_ptr<Thing> p1;
std::unique_ptr<Thing> p2 (std::make_unique<Thing>(…)
);
// p1 = p2; // Error! Can’t copy
unique ptr
p1 = std::move(p2); // p2.get() == nullptr
Thing* tp = p1.release(); // p1.get() == nullptr
…
p1.reset(new Thing(…)); // p1.get() != nullptr

29.9.2019 19

Function pointers
•Passing functionality as parameter

•function cannot be passed as a parameter, but a
pointer to a function can be passed

•e.g. to STL algorithms (and associative
containers)

•Another way: function objects

29.9.2019 20

Function pointers
bool isLessThan5(int i) {

return i < 5;
}

void printLessThan5(vector<int> const& v) {
vector<int>::const_iterator i = v.begin();
while((i = find_if(i, v.end(), &isLessThan5)) != v.end()) {

cout << *i << ‘ ‘;
++i;

}
cout << endl;

}

29.9.2019 21

