Dynamic Binding and Virtual
Functions

25.9.2018

(

I) Tampereen yliopisto
Tampere University

Virtual functions
*Subclass has an implementation of its own for a
service given in the base class

*Subclass inherits the interface, not the
iImplementation

Enabled in C++, if the member function is virtual
‘keyword: virtual

30.9.2019 1

C 7] Tampereen yliopisto
Tampere Universit

Virtual functions

Choices in a subclass:

*Accept the implementation given in the base
class

*Write an own implementation (often calls the
implementation of the base class)

Parameters and the type of the return value
cannot be changed

Dynamic binding

Virtual functions — it is possible that the interface
of a member function has a level, different from
that of the implementation

*Concluding the implementation to be called can
be impossible at compile time

*Function to be called is bound (selected) at run
time (dynamically)

) Tampereenyionet
Dynamic binding

*Decision, which implementation to call, is made at
run time

*Pointers/references:

*Pointer may point either to an object of the base class
or that of a subclass

*Implementation to be called depends on the class of
an object

— same call, different implementation based on the
object

30.9.2019 4

(

= Tampereen yliopisto
Tampere University

Addition to class Book

class Book
{
public:
virtual void printData(std::ostream& stream) const;
virtual bool keywordMatches(std::string const& word) const;
private:
void printError (std::string const& errorText) const;

};

30.9.2019 5

(

= Tampereen yliopisto
Tampere University

Addition to class Book

void Book::printError(string const& errorText) const {
cerr << “Error: " << errorText << endl;
cerr << “in book: ";
printData(cerr);
cerr << endl;

I3
void Book::printData(ostream& stream) const {
stream << author_ << " : \"" << title_ << "\"";
I3
bool Book::keywordMatches(string const& word) const {
return title_.find(word) !'= string::npos || author_.find(word)

I= string: :npos;

}

30.9.2019 6

(

= Tampereen yliopisto
Tampere University

Addition to class LibraryBook

class LibraryBook : public Book

{

[/
virtual void printData(std::ostream& stream) const;

};

void LibraryBook::printData(ostream& stream) const

{

Book::printData(stream);
stream << ", return " << retDay_;

30.9.2019 7

(

~ ") Tampereen yliopisto
e

Tampere University

Dynamic binding

void printBooks(vector<Book*> const& books)
{
for (unsigned int i = @; i !'= books.size(); ++i)
{
books[i]l->printData(cout);
cout << endl;

30.9.2019 8

(

= Tampereen yliopisto
Tampere University

Dynamic binding

int main() {
vector<Book*x> bookShelf;
bookShelf.push_back(new Book("Axiomatic", "Greg Egan"));
bookShelf.push_back(new LibraryBook('"Matemaattisia olioita",
""Leena Krohn",
Date(31,10,1999)));

printBooks (bookShelf);

for (unsigned int i = 0; i != bookShelf.size(); ++i) {
delete bookShelf[il;
bookShelf[i] = 0;

30.9.2019 9

= D Tampereen yliopisto
Tampere University

*Virtual function
function to be bound dynamically
*Dynamic (=run-time) binding
function to be called is chosen on the basis of the
object’s current class
*enables polymorphism
*Polymorphism
*in O-0O: base class instance can be replaced with a
subclass instance

30.9.2019 10

C 7] Tampereen yliopisto
Tampere Universit

Run-time type check of objects

*RTTI (Run-Time Type Identification) added to 1ISO
C++

*Requires at least one virtual function in a class

Run-time type check of objects

*Subclass object pointed by a base class pointer:
*Access only to the base class interface
*(Should be) sufficient in normal cases

*Need to access subclass interface — type cast

Run-time type check of objects

*Type cast:

*Reasonable only if the object is of type in question
— can be failed

dynamic_cast<Subclass*>(basePointer)
*If the object is not of the right type — returns O

*|f possible, avoid type casts!

(

= Tampereen yliopisto

Tampere University

Run-time type check of objects

bool lateIsIt(Bookx bp, Date const& today)

{

LibraryBookx 1lbp = dynamic_cast<LibraryBookx>(bp);

if (lbp !'= 0)

{ // If here, then the book is a library book
return lbp—>islLate(today);

s

else
{ // If here, then the book is not a library book

return false; // Therefore the is not late

}

30.9.2019 14

Finding out the class of an object

-dynamic_cast tests, if the object belongs to a
certain class (or to its subclass)

— It cannot find out, to which class the object
belongs

*For this purpose C++ has operator typeid and
class type_1info

‘Usage: #1nc lude <typeinfo>

C 7] Tampereen yliopisto
Tampere Universit

Finding out the class of an object

*Objects of class type_info
*“Represent” a certain class (each of them)
*Results from expressions:
typeid(object) and typeid(aClass)
Comparison operators == and !=

*The name of a class can be found out with
member function name

) Tampereenyionet
Finding out the class of an object

*typeid tests a thing different from
dynamic_cast

if(typeid(xbp) == typeid(LibraryBook))..
if(dynamic_cast<xLibraryBook>(bp) != 0) ..

30.9.2019 17

) Tampereenyionet
Non-virtual function and hiding

*Virtual functions require run-time check (binding)
that is not needed in other functions

*Subclass may have a member function with the
same name as a non-virtual member function of
the base class

*Subclass implementation hides the function given in
the base class

*No dynamic binding
*The way of calling determines which function is really
Ca”ed 30.9.2019 18

Non-virtual function and hiding

*To avoid errors, subclass should give new
implementations only for virtual functions

*Note that virtual property cannot be added in the
subclass

— Remember to declare as virtual all such

functions of the base class that might be redefined

In subclasses

C 7] Tampereen yliopisto
Tampere Universit

Virtual destructors
*Base class pointer pointing to an object created with
new

*Problem: how to delete the object without knowing its
class (type)?

*Destruction actions are determined at run-time
* This requires destructor to be virtual in the base class

Non-virtual destructor in the base class —
functionality undefined

30.9.2019 20

(

I) Tampereen yliopisto
Tampere University

Cost of virtual functions

Run-time check — cost

1. Checks make programs slower:
Small effect to the total execution time
*Not important, if run-time check is unavoidable

30.9.2019 21

r) Jamecreensiopise
Cost of virtual functions

2. Type information of objects consumes memory:
« Typically a pointer (4 bytes) per object
* Independent on the number of virtual functions
* In addition some memory is needed for each class

 Compiler has the right to optimize memory
consumption and execution time

30.9.2019 22

(

I) Tampereen yliopisto
Tampere University

Virtual functions in constructors and destructors

*The execution order of constructors goes from the
base class to the subclasses

*Subclass parts are not yet ready when executing
the constructor of the base class

30.9.2019 23

Virtual functions in constructors and destructors

~.Object is “not yet an object of the subclass”
— Object behaves as an object of the base class

— Dynamic binding cannot use the
Implementations of subclasses

— Avoid calling virtual functions in
consftructors!

The same holds for destructors

(

I) Tampereen yliopisto
Tampere University

Abstract base classes

Meant to be used only as a base class
*Cannot be instantiated

* Typically includes interface function with no
(adequate) implementation

30.9.2019 25

(

I) Tampereen yliopisto
Tampere University

Abstract base classes

*Pure virtual function
*Implementation must be given in subclasses
*Base class usually gives no implementation
*In class definition, function declaration added
with =0

*Class is abstract, until all pure virtual functions
have an implementation

30.9.2019 26

(

= Tampereen yliopisto
Tampere University

Pure virtual functions

class Animal : public Organism {
public:
virtual ~Animal();
virtual void move(Location destination) = 0;

};

class Bird : public Animal {
public:

virtual ~Bird();

virtual void sing() = 0;

};

30.9.2019 27

(

= Tampereen yliopisto
Tampere University

Pure virtual functions

class Hen : public Bird
{
public:
virtual ~Hen();
virtual void reproduce(); // Implementation for reproducing

virtual void move(Location destination); // Implementation
for moving

virtual void sing(); // Implementation for singing

private:
// Put here necessary private features
Fi

30.9.2019 28

(

~ ") Tampereen yliopisto
e

Tampere University

Pure virtual function with implementation

class Animal : public Organism {
public:
virtual ~Animal();

virtual void move(Location destination) = 0:
private:

Location place_;

b

30.9.2019 29

(

= Tampereen yliopisto
Tampere University

Pure virtual function with implementation

void Animal::move(Location destination)

{

place_ = destination;

void Hen::move(Location destination)
{
// Write here move actions for hen, walking etc.

Animal::move(destination); // Base class implements common
movement

}

30.9.2019 30

(

I) Tampereen yliopisto
Tampere University

Inheritance and interface classes

*Base class including only the definition of an
interface — interface class

*E.g. Java has interfaces separated from classes
(different syntax)

*Problem in class hierarchy: interfaces are
independent of each other and concrete classes
may have different combinations of the interfaces
— concept for separate interfaces

30.9.2019 3

(

= Tampereen yliopisto

Tampere University

Interface
classes

Organism
{abstract}

reproduce() {abstract}

L'L

Fungus
{abstract}

decompose() {abstract}

JZAN

Animal
{abstract}

4&

<<interface>>
Movable

move() {abstract}

[|
SlimeMould Mammal Bird | {> <<interface>>
{abstract} {abstract} {abstract} Oviparous
reproduce() breastfeed() {abstract} sing() {abstract} layEgg() {abstract}
decompose() layEgg()
move() 4 4;
| [|
Platypus Human Hen Nightingale
vevable duce() Guce() duce() duce()
reproduce reproduce reproduce reproduce
_ move() move() sing() sing()
Oviparous | jyreastfeed() breastfeed() move() move()
layEgg()

30.9.2019

32

(

= Tampereen yliopisto
Tampere University

C++: abstract base classes and multiple inheritance

class Movable {
public:
virtual ~Movable();
virtual void move(Location destination) = 0;
b
class Oviparous
{
public:
virtual ~Oviparous();
virtual void layEgg() = 0;
b

30.9.2019 33

(

= Tampereen yliopisto
Tampere University

C++: abstract base classes and multiple
inheritance

class Platypus : public Mammal,

class Animal : public Organism, public Oviparous

public Movable {
{ public:
public: virtual ~Platypus();
virtual ~Animal(); virtual void reproduce();
private: virtual void move (Location
. destination);

virtual void breastfeed();

virtual void layEgg();
b

30.9.2019 34

