
Dynamic Binding and Virtual
Functions

25.9.2018

Virtual functions
•Subclass has an implementation of its own for a
service given in the base class

•Subclass inherits the interface, not the
implementation

•Enabled in C++, if the member function is virtual
•keyword: virtual

30.9.2019 1

Virtual functions
•Choices in a subclass:

•Accept the implementation given in the base
class

•Write an own implementation (often calls the
implementation of the base class)

•Parameters and the type of the return value
cannot be changed

30.9.2019 2

Dynamic binding
•Virtual functions → it is possible that the interface
of a member function has a level, different from
that of the implementation

•Concluding the implementation to be called can
be impossible at compile time

•Function to be called is bound (selected) at run
time (dynamically)

30.9.2019 3

Dynamic binding
•Decision, which implementation to call, is made at
run time

•Pointers/references:
•Pointer may point either to an object of the base class
or that of a subclass

•Implementation to be called depends on the class of
an object
→ same call, different implementation based on the
object

30.9.2019 4

Addition to class Book
class Book
{

public:
virtual void printData(std::ostream& stream) const;
virtual bool keywordMatches(std::string const& word) const;

private:
void printError (std::string const& errorText) const;

};

30.9.2019 5

Addition to class Book
void Book::printError(string const& errorText) const {

cerr << “Error: " << errorText << endl;
cerr << “in book: ";
printData(cerr);
cerr << endl;

}
void Book::printData(ostream& stream) const {

stream << author_ << " : \"" << title_ << "\"";
}
bool Book::keywordMatches(string const& word) const {

return title_.find(word) != string::npos || author_.find(word)
!= string::npos;
}

30.9.2019 6

Addition to class LibraryBook
class LibraryBook : public Book
{

// ...
virtual void printData(std::ostream& stream) const;

};

void LibraryBook::printData(ostream& stream) const
{

Book::printData(stream);
stream << ", return " << retDay_;

}

30.9.2019 7

Dynamic binding
void printBooks(vector<Book*> const& books)
{

for (unsigned int i = 0; i != books.size(); ++i)
{

books[i]->printData(cout);
cout << endl;

}
}

30.9.2019 8

Dynamic binding
int main() {

vector<Book*> bookShelf;
bookShelf.push_back(new Book("Axiomatic", "Greg Egan"));
bookShelf.push_back(new LibraryBook("Matemaattisia olioita",

"Leena Krohn",
Date(31,10,1999)));

printBooks(bookShelf);
for (unsigned int i = 0; i != bookShelf.size(); ++i) {

delete bookShelf[i];
bookShelf[i] = 0;

}
}

30.9.2019 9

Terms
•Virtual function

•function to be bound dynamically
•Dynamic (=run-time) binding

•function to be called is chosen on the basis of the
object’s current class

•enables polymorphism
•Polymorphism

•in O-O: base class instance can be replaced with a
subclass instance

30.9.2019 10

Run-time type check of objects
•RTTI (Run-Time Type Identification) added to ISO
C++

•Requires at least one virtual function in a class

30.9.2019 11

Run-time type check of objects
•Subclass object pointed by a base class pointer:

•Access only to the base class interface
•(Should be) sufficient in normal cases

•Need to access subclass interface → type cast

30.9.2019 12

Run-time type check of objects
•Type cast:

•Reasonable only if the object is of type in question
→ can be failed

•dynamic_cast<Subclass*>(basePointer)
•If the object is not of the right type → returns 0

•If possible, avoid type casts!

30.9.2019 13

Run-time type check of objects
bool lateIsIt(Book* bp, Date const& today)
{

LibraryBook* lbp = dynamic_cast<LibraryBook*>(bp);
if (lbp != 0)
{ // If here, then the book is a library book

return lbp->isLate(today);
}
else
{ // If here, then the book is not a library book

return false; // Therefore the is not late
}

}

30.9.2019 14

Finding out the class of an object
•dynamic_cast tests, if the object belongs to a
certain class (or to its subclass)

→ It cannot find out, to which class the object
belongs
•For this purpose C++ has operator typeid and
class type_info
•Usage: #include <typeinfo>

30.9.2019 15

Finding out the class of an object
•Objects of class type_info

•“Represent” a certain class (each of them)
•Results from expressions:

typeid(object) and typeid(aClass)
•Comparison operators == and !=
•The name of a class can be found out with
member function name

30.9.2019 16

Finding out the class of an object
•typeid tests a thing different from
dynamic_cast

if(typeid(*bp) == typeid(LibraryBook))…
if(dynamic_cast<*LibraryBook>(bp) != 0) …

30.9.2019 17

Non-virtual function and hiding
•Virtual functions require run-time check (binding)
that is not needed in other functions

•Subclass may have a member function with the
same name as a non-virtual member function of
the base class
•Subclass implementation hides the function given in
the base class

•No dynamic binding
•The way of calling determines which function is really
called 30.9.2019 18

Non-virtual function and hiding
•To avoid errors, subclass should give new
implementations only for virtual functions

•Note that virtual property cannot be added in the
subclass

→ Remember to declare as virtual all such
functions of the base class that might be redefined
in subclasses

30.9.2019 19

Virtual destructors
•Base class pointer pointing to an object created with

new
•Problem: how to delete the object without knowing its

class (type)?

•Destruction actions are determined at run-time

•This requires destructor to be virtual in the base class
•Non-virtual destructor in the base class →

functionality undefined

30.9.2019 20

Cost of virtual functions
•Run-time check → cost
1. Checks make programs slower:

•Small effect to the total execution time
•Not important, if run-time check is unavoidable

30.9.2019 21

Cost of virtual functions
2. Type information of objects consumes memory:

• Typically a pointer (4 bytes) per object
• Independent on the number of virtual functions
• In addition some memory is needed for each class

• Compiler has the right to optimize memory
consumption and execution time

30.9.2019 22

Virtual functions in constructors and destructors
•The execution order of constructors goes from the
base class to the subclasses

•Subclass parts are not yet ready when executing
the constructor of the base class

30.9.2019 23

Virtual functions in constructors and destructors
→ Object is “not yet an object of the subclass”
→ Object behaves as an object of the base class
→ Dynamic binding cannot use the
implementations of subclasses
→ Avoid calling virtual functions in
constructors!
•The same holds for destructors

30.9.2019 24

Abstract base classes
•Meant to be used only as a base class
•Cannot be instantiated
•Typically includes interface function with no
(adequate) implementation

30.9.2019 25

Abstract base classes
•Pure virtual function

•Implementation must be given in subclasses
•Base class usually gives no implementation
•In class definition, function declaration added
with =0

•Class is abstract, until all pure virtual functions
have an implementation

30.9.2019 26

Pure virtual functions
class Animal : public Organism {
public:

virtual ~Animal();
virtual void move(Location destination) = 0;

};

class Bird : public Animal {
public:

virtual ~Bird();
virtual void sing() = 0;

};

30.9.2019 27

Pure virtual functions

30.9.2019 28

class Hen : public Bird
{
public:

virtual ~Hen();
virtual void reproduce(); // Implementation for reproducing
virtual void move(Location destination); // Implementation

for moving
virtual void sing(); // Implementation for singing

private:
// Put here necessary private features

};

Pure virtual function with implementation
class Animal : public Organism {
public:

virtual ~Animal();
virtual void move(Location destination) = 0;

private:
Location place_;

};

30.9.2019 29

Pure virtual function with implementation
void Animal::move(Location destination)
{

place_ = destination;
}

void Hen::move(Location destination)
{

// Write here move actions for hen, walking etc.
Animal::move(destination); // Base class implements common

movement
}

30.9.2019 30

Inheritance and interface classes
•Base class including only the definition of an
interface → interface class

•E.g. Java has interfaces separated from classes
(different syntax)

•Problem in class hierarchy: interfaces are
independent of each other and concrete classes
may have different combinations of the interfaces
→ concept for separate interfaces

30.9.2019 31

Interface
classes

30.9.2019 32

Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

<<interface>>
Movable

move() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

<<interface>>
Oviparous

layEgg() {abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Movable

Oviparous

Hen

reproduce()
sing()
move()

C++: abstract base classes and multiple inheritance
class Movable {
public:

virtual ~Movable();
virtual void move(Location destination) = 0;

};
class Oviparous
{
public:

virtual ~Oviparous();
virtual void layEgg() = 0;

};

30.9.2019 33

C++: abstract base classes and multiple
inheritance

class Animal : public Organism,
public Movable

{
public:
virtual ~Animal();

private:
};

class Platypus : public Mammal,
public Oviparous
{
public:
virtual ~Platypus();
virtual void reproduce();
virtual void move (Location

destination);
virtual void breastfeed();
virtual void layEgg();

};

30.9.2019 34

