
Exception safety
2.10.2018

Error hierarchy

2.10.2019 1

Exceptions and constructors
•Objects are constructed step by step — when is
the time of creation?

•Important to know, if construction leads to errors
•C++: object “is born” when all the constructors
have been executed successfully

2.10.2019 2

Exceptions and constructors
•A single error unhandled in the constructor → the
object does not exist

•Destructors of those member variables that have
already been constructed will be executed

•Be careful, if constructors have dynamically
created objects

2.10.2019 3

Exceptions and constructors
class Person {
public:

Person(int d, int m, int y, std::string const& name,
std::string const& id);

~Person();
private:

Date birthDay_;
std::string name_;
std::string* id_;

};

2.10.2019 4

Exceptions and constructors
Person::Person(int d, int m, int y, std::string const& name,

std::string const& id)
: birthDay_(d, m, y), name_(name), id_(0) {
try {

id_ = new std::string(id);
}
catch (...) {

// If here, then creation of identification failed
// Clean up if necessary, creation of the object failed
throw; // throw the exception to be handled further

}
}

2.10.2019 5

Reaction to creation errors
•Constructor of a member variable or that of the
base class fails → creation cannot succeed

•Dynamically created object can try to be
recreated, if reasonable

•Errors in the constructors of member variables
and that of the base class caught in function try
block

2.10.2019 6

Reacting to creation errors
•Error can be changed to another one, recovery
not possible

•Member variables and base class parts have
already been destructed → they cannot be
accessed

2.10.2019 7

Function try block in constructor
Person::Person(int d, int m, int y, std::string const& name,

std::string const& id)
try // Note the place of try!

: birthDay_(d, m, y), name_(name), id_(0) {
…

}
catch (...) { // If here, then creation of a member variable

// (or base class) has failed.
// Necessary actions.
throw; // … or another exception is thrown.

}

2.10.2019 8

Exceptions and destructors
•Constructors should not leak out exceptions!
•Constructor should handle the exceptions caused by
itself

•If not, then it is better to use a special member
function to clean up

•Function try block is possible in principle, but almost
as useless in destructors

•uncaught_exception — also almost useless

2.10.2019 9

Exception safety
•Encapsulation hides implementation — as well as
the risks of errors

•Inheritance & polymorphism — implementation
even more far away and varying

→ interface documentation extremely important

2.10.2019 10

Exception guarantees
•Subclasses must not violate promises given in
their base classes

•Base class must not promise too much about
errors or the lack of them

•Documentation becomes easier by predefined
terms for different situations: exception
guarantees

2.10.2019 11

Exception guarantees
•Minimal guarantee – No waste of resources

•object can be deleted/reset but not otherwise
usable

•class invariant do not necessarily hold

2.10.2019 12

Exception guarantees
•Basic guarantee

•state of an object non-predictable but valid
•class invariant continues to hold
•object still usable per se

2.10.2019 13

Exception guarantees
•Strong guarantee

•commit or rollback
•Nothrow guarantee

•no errors happen, ideal for the programmer
•Exception neutrality

2.10.2019 14

Example: Exception safe assignment
•Recall for class Book: analysis and improvement
of the assignment operator

•Step 1: analyze existing exception guarantee
•Step 2: improve it, if possible and rational

2.10.2019 15

Simple class with assignment operator
class Book {
public:

…
Book& operator =(Book

const& book);
private:

std::string title_;
std::string author_;

};

Book& Book::operator =(Book const&
book)
{

if (this != &book) {
title_ = book.title_;
author_ = book.author_;

}
return *this;

}

2.10.2019 16

Goal: strong
guarantee

Book& Book::operator =(Book const& book) {
if (this != &book) {

std::string origTitle(title_);
std::string origAuthor(author_);
try {

title_ = book.title_;
author_ = book.author_;

}
catch (...) {

title_ = origTitle;
author_ = origAuthor;
throw;

}
}
return *this;

}
2.10.2019 17

More indirect solution
class Book {
public:

Book(std::string const& title, std::string const& author);
// Copy constructor also needed (dynamic memory management)!
~Book();
// ...
Book& operator =(Book const& book);

private:
std::string* titlep_;
std::string* authorp_;

};

2.10.2019 18

Strong guarantee in indirect case
Book::Book(std::string const& title, std::string const& author) :

titlep_(0), authorp_(0) {
try {

titlep_ = new std::string(title);
authorp_ = new std::string(author);

}
catch (...) {

delete titlep_; titlep_ = 0;
delete authorp_; authorp_ = 0;
throw;

}
}

2.10.2019 19

Similarly:
Book::~Book() {

delete titlep_; titlep_ = 0;
delete authorp_; authorp_ = 0;

}

… cont.
Book& Book::operator =(Book const& book) {

if (this != &book) /* Actually unnecessary! */ {
std::string* newTitlep = 0;
std::string* newAuthorp = 0;
try {

newTitlep = new std::string(*book.titlep_);
newAuthorp = new std::string(*book.authorp_);
// If here, then no errors detected
delete titlep_; titlep_ = newTitlep; // Succeed always
delete authorp_; authorp_ = newAuthorp; // As above

}
catch (...) {

delete newTitlep; newTitlep = 0;
delete newAuthorp; newAuthorp = 0;
throw;

}
}
return *this;

}
2.10.2019 20

Private implementation (pimpl)
class Book {
public:

Book(std::string const& title, std::string const& author);
// Copy constructor also needed!
~Book();
// ...
Book& operator =(Book const& book);

private:
struct State;
std::unique_ptr<State> statep_;

};

2.10.2019 21

Private implementation (pimpl)
struct Book::State {

std::string title_;
std::string author_;
State(std::string const& title, std::string const& author) :

title_(title), author_(author) {}
};

Book::Book(std::string const& title, std::string const& author) :
statep_(new State(title, author))

{
}

Book::~Book()
{ // Unique pointer destructs the state automatically
}

2.10.2019 22

Private implementation (pimpl)
Book& Book::operator =(Book const& book)
{

std::unique_ptr<State> newStatep =
std::make_shared<State>(*book.statep_);

statep_ = std::move(newStatep); // Cannot fail and
// destructs the old state

return *this;
}

2.10.2019 23

Swapping states (nothrow)
class Book
{
public:

// ...
Book& operator =(Book const& book);
void swap(Book& book);

private:
std::string title_;
std::string author_;

};

2.10.2019 24

Swapping states (nothrow)
void Book::swap(Book& book) {

title_.swap(book.title_); // This cannot fail
author_.swap(book.author_); // This neither

}

Book& Book::operator =(Book const& book) {
Book bookCopy(book); // Copy of the book to be assigned
swap(bookCopy); // Swapping ourselves to it, does not fail
return *this; // Old state is destroyed along with the copy

}

2.10.2019 25

C++ specifiers
•override (for virtual functions) → subclass
provides an implementation of its own

•final (for virtual functions) → subclass cannot
provide an implementation of its own

•noexcept → no exception is thrown
•= 0 → pure virtual function

2.10.2019 26

