Copying, assigning, and move

10.10.2019

(

'D Tampere University

Assignment and copy
*Typical in “normal” (imperative) programming
*Especially with primitive types
*With abstract data types, as well
*Assigning and copying objects?

(

'D Tampere University

Copying objects

* Automatic copying in value parameters and return
values

*What is a copy”?

*Primitive types: a copy Is created by copying the
original content of a memory cell

(

'D Tampere University

Copying objects
*Copying memory?: No — an object is more than
its member variables

*An identical copy?: No — a copy is not the same
as the original one

*The value or state will be the same as that of
the original one

(

'D Tampere University

Copying objects

*The way and semantics of copying depend on
the type of object!

«Compiler cannot always create a copy
automatically

*Programmer must tell how to copy an object

*All objects are not reasonable to be copied —
preventing copying

(

'D Tampere University

Reference copy

*ldea: New object is a reference to the old one

*Especially in languages with reference semantics
(Smalltalk, Java)

10.10.2019

(

- J Tampere University
Reference copy
A A L
K Object f Object
3 3
7 _/
‘ Object’s data ’ <A Object’s data ’

Before copy After copy

(

'D Tampere University

Shallow copy

*ldea: Copy of the object itself and its member
variables, but of no data outside the object

*Easy to implement in a programming language

*Problem: Part of the data describing the state of
the object can lie outside the object

(

D Tampere University
Shallow copy
A A B
K Object K Object f Object
3 3
. . F\/
<. Object’s data ’ <. Object’s data

Before copy After copy

(

'D Tampere University

Deep copy

*ldea: Copy covers also the outside data
describing the state of the object — “correct” way
to copy an object

*Problem: Which outside parts describe the state
of the object?

*Solution: Compiler cannot conclude this —
programmer writes implementation

(

- J Tampere University
Deep copy
A A B
K Object K Object f Object
3 3 3
N N N

<. Object’s data ’ <. Object’s data ’ <. Object’s data

Before copy After copy

(

'D Tampere University

C++: copy constructor

*Object is copied with copy constructor

*Copy constructor gets a reference to the original
object — enable to initialize a new object to be
similar than the original one

11

(

'D Tampere University

C++: copy constructor

*Possible actions in copy constructor:

*|nitialization (copy) of member variables directly
from the original ones

Memory allocation and copying the outside data

(

'D Tampere University

Copy constructor for string

class MyString

{
public:
MyString(char constx characters);

MyString(MyString const& old); // Copy constructor
virtual ~MyString();
private:
unsigned long size_;
charx characters_;

b

10.10.2019

(

- J Tampere University

Copy constructor for string

MyString: :MyString(MyString const& old) : size_(old.size_), characters_(0)
{

if (size_ !'= 0)

{ // Allocates space for strings longer than zero
characters_ = new char[size_+ 1];
for (unsigned long i = 0; i !'= size_; ++i) {

characters_[i] = old.characters_[i]l; // Copies character by
// Xscharacter

}

characters_[size_] = '\@'; // Ending character

10.10.2019

(

'D Tampere University

Inheritance and copy constructor

*Copy constructor is a constructor — subclass
copy constructor must call base class copy
constructor

*Base class copy constructor: initializes the base
class part as a copy

*Subclass copy constructor: initializes the subclass
part as a copy

10.10.2019

(

J Tampere University

class DatedString : public MyString Copy constructor:
{ dated string

public:
DatedString(char constx characters, Date const& date);

DatedStrlng(DatedStrlng const& old); // Copy constructor
virtual ~DatedString();

private:
Date date_;
b

// Assumes Date class to have a copy constructor

DatedStrlng DatedStrlng(DatedStrlng const& old) : MyString(old),
date (old.date_

{
}

16

10.10.2019

(

'D Tampere University

Default copy constructor

*Programmer has not written a copy constructor for a
class — compiler provides a default copy
constructor

*Default copy constructor copies member variables
directly

*\Works in simple classes

*Class is complex or has pointers — default copy
constructor usually does not work correctly!

10.10.2019

(

'D Tampere University

Preventing copying
«Sometimes copying is not meaningful — then it
should be impossible

*No written copy constructor — default copy
constructor — copying enabled (possibly
incorrectly)

*To prevent copying add to public interface
(C++11):

AClass(const AClass& value) = delete;

(

") Tampere University

Slicing

/ DatedString / MyString

MyString part Copy constructor

size E

characters

MyString part
size E

characters

of MyString

DatedString part

d@e O e S

N

I am slicing I am slicing

19

(

- J Tampere University

To avoid slicing

class MyString :

{
public:
MyString(MyString const& s);
virtual MyStringx clone() const;
i

MyStringx MyString::clone() const
{

return new MyString(xthis);

}

class DatedString : public MyString

{

public:
DatedString(DatedString const& s);
virtual DatedStringx clone() const;

¥

DatedString* DatedString::clone() const
{

return new DatedString(xthis);

}

10.10.2019 20

(

'D Tampere University

To avoid slicing

void useCopy(MyString const& ms)
{
MyStringx copyp = ms.clone(); // Perhaps copy
// of an inherited
// object
// The copy is used here
delete copyp; copyp = @; // Remember to destroy

10.10.2019

(

'D Tampere University

Assigning objects

*Assignment and copying lead to the same result

*|n assignment, there is already an object — its old
value will be replaced with a new one

*Problems in assignment are related to the old
value

(

'D Tampere University

Assigning objects

*|f you need to be prepared for errors:
*An error occurring during assignment?
*Should the old value be returned? — difficult

*Sometimes assignment is not meaningful — to
be prevented

*Sometimes assignment is not meaningful, even
If copying is such

23

(

'D Tampere University

C++: assignment operator

*C++ has a specific operator for assignment
(written either operator = or operator=)

*Combines actions from both destructor and copy
constructor

10.10.2019

(

'D Tampere University

a=b
Calls assignment operator of a with b as a
reference parameter

*Destructs the old value of a and replaces it with
that of b

*Returns reference to the object itself, here a
(enables assignment chains: a = b = ¢)

*“Object-like” syntax: a.operator =(b)

(

'D Tampere University

operator= with strings

class MyString
{
public:

MyString& operator =(MyString const& old);
private:

unsigned long size_ ;

charx characters_;

b

10.10.2019

26

C J Tampere University 0 pe rato r=
with

MyString& MyString::operator =(MyString const& old) |

if (this != &old) { // If not assigned to itself strinas
delete[] characters_; characters_ = 0; // Releases the ol
size_ = old.size_; // Sijoita koko
if (size_ != 0) { // Allocates space for strings longer
// than zero
characters_ = new char[size_ + 1];
for (unsigned long i = 0; i != size_; ++i)

{ // Copies character by character
characters_[i] = old.characters_[i];

}

characters_[size_] = '\@'; // Ending character
} 27
}

return xthis;

10.10.2019

(

'D Tampere University

Self assighnment

*Assignment a = a is stupid, but allowed

*Danger in normal assignment:

*First thing is to release memory cell and other
resources related to the old value

*Next step is to allocate new memory cells and perform
the actual assignment

*In self assignment new value is the same as old value
*— do not work in self assignment!

10.10.2019

(

'D Tampere University

Self assighnment

*A simple solution:

*Self assignment should do nothing

— check if the action is self assignment

— If it is, then do nothing

— If not, then assign as normally

— check by comparing this reference and the
reference to the parameter

29

(

'D Tampere University

Inheritance and assignment

* The same work distribution as in copying:

*Subclass assignment operator: calls base class
assignment operator, assignment of subclass part

*Base class assignment operator: assignment of base
class part

*Recall to call base class assignment operator in
subclass assignment!

*Compiler does not warn about missing call!

10.10.2019

30

(

- J Tampere University

class DatedString : public MyString { SUbCIaSS
public:

DatedString& operator =(DatedString const& old); Operat0r=
/] e

private:
Date date_;

b

DatedString& DatedString::operator =(DatedString const& old) {
if (this != &old) { // If not assigned to itself
MyString::operator =(old); // Base class assignment operator
// Own (subclass) assignment, assumes Date class to have an
// assignment operator
date_ = old.date_;
I3

return xthis;

10.10.2019

31

(

'D Tampere University

Default assignment operator

*Programmer has not written an assignment
operator — compiler provides a default assignment
operator

*Default assignment operator assigns member
variables directly

*\Works in simple class

*If a class is complicated or has pointers — default
assignment operator usually does not work correctly!

10.10.2019

(

'D Tampere University

Preventing assignment
«Sometimes assignment is not meaningful — then it
should be impossible

*No written assignment operator — default
assignment operator — assignment enabled
(possibly incorrectly)

*To prevent assignment: to public interface

33

AClass& operator=(const AClass& value) = delete;

10.10.2019

(

'D Tampere University

Slicing and assignment

*Slicing is possible also in assignment

*Subclass object is also a base class object — it can be
assigned to a base class object

*Base class references and pointers enable assignment
of a subclass object to another subclass object!

* Assignment slicing is possible also in other 0-0

languages (but they usually have no built-in assignment .
operator)

10.10.2019

(

'D Tampere University

Move (C++11)

*“The purpose of a move constructor is to steal as
many resources as it can from the original object
as fast as possible, because the original does not
need to have a meaningful value ...”

*Faster than copying!

35

10.10.2019

(

'D Tampere University

Move

*Move constructor:

AClass(AClass&& old);
*Move assignment:

AClass& operator =(AClass&& other);
*|t is important to think if you want to move

