
Copying, assigning, and move
10.10.2019

Assignment and copy
•Typical in “normal” (imperative) programming

•Especially with primitive types
•With abstract data types, as well

•Assigning and copying objects?

10.10.2019

1

Copying objects
•Automatic copying in value parameters and return
values

•What is a copy?
•Primitive types: a copy is created by copying the
original content of a memory cell

10.10.2019

2

Copying objects
•Copying memory?: No — an object is more than
its member variables

•An identical copy?: No — a copy is not the same
as the original one

•The value or state will be the same as that of
the original one

10.10.2019

3

Copying objects
•The way and semantics of copying depend on
the type of object!
•Compiler cannot always create a copy
automatically

•Programmer must tell how to copy an object
•All objects are not reasonable to be copied →
preventing copying

10.10.2019

4

Reference copy
•Idea: New object is a reference to the old one
•Especially in languages with reference semantics
(Smalltalk, Java)

10.10.2019

5

Reference copy

10.10.2019

6

Object

3

Object’s data

Before copy

A

Object

3

Object’s data

After copy

A B

Shallow copy
•Idea: Copy of the object itself and its member
variables, but of no data outside the object

•Easy to implement in a programming language
•Problem: Part of the data describing the state of
the object can lie outside the object

10.10.2019

7

Shallow copy

10.10.2019

8

Object

3

Object’s data

Before copy

A
Object

3

Object’s data

After copy

A
Object

3

B

Deep copy
•Idea: Copy covers also the outside data
describing the state of the object → “correct” way
to copy an object

•Problem: Which outside parts describe the state
of the object?

•Solution: Compiler cannot conclude this →
programmer writes implementation

10.10.2019

9

Deep copy

10.10.2019

10

Object

3

Object’s data

Before copy

A
Object

3

Object’s data

After copy

A
Object

3

B

Object’s data

C++: copy constructor
•Object is copied with copy constructor
•Copy constructor gets a reference to the original
object → enable to initialize a new object to be
similar than the original one

10.10.2019

11

C++: copy constructor
•Possible actions in copy constructor:

•Initialization (copy) of member variables directly
from the original ones

•Memory allocation and copying the outside data
– ...

10.10.2019

12

Copy constructor for string
class MyString
{
public:

MyString(char const* characters);
MyString(MyString const& old); // Copy constructor
virtual ~MyString();

private:
unsigned long size_;
char* characters_;

};

10.10.2019

13

Copy constructor for string
MyString::MyString(MyString const& old) : size_(old.size_), characters_(0)
{

if (size_ != 0)
{ // Allocates space for strings longer than zero

characters_ = new char[size_ + 1];
for (unsigned long i = 0; i != size_; ++i) {

characters_[i] = old.characters_[i]; // Copies character by
// xscharacter

}
characters_[size_] = '\0'; // Ending character

}
}

10.10.2019

14

Inheritance and copy constructor
•Copy constructor is a constructor → subclass
copy constructor must call base class copy
constructor

•Base class copy constructor: initializes the base
class part as a copy

•Subclass copy constructor: initializes the subclass
part as a copy

10.10.2019

15

Copy constructor:
dated string

class DatedString : public MyString
{
public:

DatedString(char const* characters, Date const& date);
DatedString(DatedString const& old); // Copy constructor
virtual ~DatedString();

private:
Date date_;

};

// Assumes Date class to have a copy constructor
DatedString::DatedString(DatedString const& old) : MyString(old),
date_(old.date_)
{
}

10.10.2019

16

Default copy constructor
•Programmer has not written a copy constructor for a
class → compiler provides a default copy
constructor

•Default copy constructor copies member variables
directly
•Works in simple classes
•Class is complex or has pointers → default copy
constructor usually does not work correctly!

10.10.2019

17

Preventing copying
•Sometimes copying is not meaningful → then it
should be impossible

•No written copy constructor → default copy
constructor → copying enabled (possibly
incorrectly)

•To prevent copying add to public interface
(C++11):

AClass(const AClass& value) = delete;

10.10.2019

18

Slicing

10.10.2019

19

DatedString

MyStríng part

size
characters

MyString

MyStríng part

size
characters

DatedStríng part

date

I am slicing

Copy constructor
of MyString

Slicing!

I am slicing

To avoid slicing
class MyString :
{
public:

MyString(MyString const& s);
virtual MyString* clone() const;
…

};

MyString* MyString::clone() const
{

return new MyString(*this);
}

class DatedString : public MyString
{
public:

DatedString(DatedString const& s);
virtual DatedString* clone() const;
…

};

DatedString* DatedString::clone() const
{

return new DatedString(*this);
}

10.10.2019 20

To avoid slicing
void useCopy(MyString const& ms)
{

MyString* copyp = ms.clone(); // Perhaps copy
// of an inherited
// object

// The copy is used here
delete copyp; copyp = 0; // Remember to destroy

}

10.10.2019

21

Assigning objects
•Assignment and copying lead to the same result
•In assignment, there is already an object → its old
value will be replaced with a new one

•Problems in assignment are related to the old
value

10.10.2019

22

Assigning objects
•If you need to be prepared for errors:

•An error occurring during assignment?
•Should the old value be returned? → difficult

•Sometimes assignment is not meaningful → to
be prevented

•Sometimes assignment is not meaningful, even
if copying is such

10.10.2019

23

C++: assignment operator
•C++ has a specific operator for assignment
(written either operator = or operator=)

•Combines actions from both destructor and copy
constructor

10.10.2019

24

a=b
•Calls assignment operator of a with b as a
reference parameter

•Destructs the old value of a and replaces it with
that of b

•Returns reference to the object itself, here a
(enables assignment chains: a = b = c)

•“Object-like” syntax: a.operator =(b)

10.10.2019

25

operator= with strings
class MyString
{
public:

…
MyString& operator =(MyString const& old);

private:
unsigned long size_;
char* characters_;

};

10.10.2019

26

operator=
with

strings
MyString& MyString::operator =(MyString const& old) {

if (this != &old) { // If not assigned to itself
delete[] characters_; characters_ = 0; // Releases the old
size_ = old.size_; // Sijoita koko
if (size_ != 0) { // Allocates space for strings longer

// than zero
characters_ = new char[size_ + 1];
for (unsigned long i = 0; i != size_; ++i)
{ // Copies character by character
characters_[i] = old.characters_[i];

}
characters_[size_] = '\0'; // Ending character

}
}
return *this;

}

10.10.2019

27

Self assignment
•Assignment a = a is stupid, but allowed
•Danger in normal assignment:

•First thing is to release memory cell and other
resources related to the old value

•Next step is to allocate new memory cells and perform
the actual assignment

•In self assignment new value is the same as old value
•→ do not work in self assignment!

10.10.2019

28

Self assignment
•A simple solution:

•Self assignment should do nothing
→ check if the action is self assignment
→ if it is, then do nothing
→ if not, then assign as normally
– check by comparing this reference and the
reference to the parameter

10.10.2019

29

Inheritance and assignment
•The same work distribution as in copying:

•Subclass assignment operator: calls base class
assignment operator, assignment of subclass part

•Base class assignment operator: assignment of base
class part

•Recall to call base class assignment operator in
subclass assignment!

•Compiler does not warn about missing call!

10.10.2019

30

Subclass
operator=

class DatedString : public MyString {
public:

DatedString& operator =(DatedString const& old);
// ...

private:
Date date_;

};

DatedString& DatedString::operator =(DatedString const& old) {
if (this != &old) { // If not assigned to itself

MyString::operator =(old); // Base class assignment operator
// Own (subclass) assignment, assumes Date class to have an
// assignment operator
date_ = old.date_;

}
return *this;

}

10.10.2019

31

Default assignment operator
•Programmer has not written an assignment
operator → compiler provides a default assignment
operator

•Default assignment operator assigns member
variables directly
•Works in simple class
•If a class is complicated or has pointers → default
assignment operator usually does not work correctly!

10.10.2019

32

Preventing assignment
•Sometimes assignment is not meaningful → then it
should be impossible

•No written assignment operator → default
assignment operator → assignment enabled
(possibly incorrectly)

•To prevent assignment: to public interface

AClass& operator=(const AClass& value) = delete;

10.10.2019

33

Slicing and assignment
•Slicing is possible also in assignment
•Subclass object is also a base class object → it can be
assigned to a base class object

•Base class references and pointers enable assignment
of a subclass object to another subclass object!

•Assignment slicing is possible also in other o-o
languages (but they usually have no built-in assignment
operator)

10.10.2019

34

Move (C++11)
•“The purpose of a move constructor is to steal as
many resources as it can from the original object
as fast as possible, because the original does not
need to have a meaningful value …”

•Faster than copying!

10.10.2019

35

Move
•Move constructor:
AClass(AClass&& old);

•Move assignment:
AClass& operator =(AClass&& other);

•It is important to think if you want to move

10.10.2019

36

