
Interfaces:
Design by Contract

2.9.2019



A good interface?

1.9.2019

1

Fig: clement127 (CC BY-NC-ND 2.0)

•Complete
•Beautiful
•Cute



The purpose of an interface?

1.9.2019 2

Fig: Clement127 (CC BY-NC-ND 2.0)



Where do the interfaces come from?
Main steps in designing a program:
Component
• identification
• responsibilities
• connections
• Specifying interfaces

1.9.2019 3



Interface specification
• What is the use allowed by an interface?
• What do the functions behind an interface promise to do?
• What kind of errors are possible in the functions?
• How to test an interface?

1.9.2019 4



Design by Contract

1.9.2019 5

Fig: Fabuio (Own work) [CC0], via Wikimedia Commons

• A clean metaphor 
to guide the 
design process



Design by contract
Interface specification given as a contract
• Client (caller) and supplier (implementor)
• Mutual obligations and benefits
Contract between an interface and its user
• Responsibility of a caller: how the interface is allowed to be 
used? (precondition)

• Responsibility of an implementor: what does an interface 
promise to do? (postcondition)

• Specification of errors
{P} o.service() {Q}

1.9.2019 6



Precondition
• Must be true before a service
•Caller is responsible on fulfillment
• “When/how to call a service?” or “What does the service 
expect?”

• E.g. {a<10 ⋀ b<20}

1.9.2019 7



Postcondition
• Must be true after the service
• Implementor is responsible on fulfillment
• “What does a service promise to do” or “What does it 
guarantee?”

• Violation of postcondition leads to an exception
• E.g. {j<30 ⋀ a<10 ⋀ b<20}

1.9.2019 8



Obligations
Client
• Takes care of fulfilling the precondition
• Preconditions can be checked during testing, not in the final 
program

Supplier
• Takes care of fulfilling the postcondition
• No more checks of the obligations of the caller
• If the service fails (violation of the postcondition) ⇒ exception, to 
be informed about

1.9.2019 9



(Class) invariant
Logical assertion that is held to always be true (during a certain 
phase of the execution)
• Tests if an object is valid or “in its right mind”
• Must be true between the calls
{CLASS_INVARIANT ⋀ P} o.service() {CLASS_INVARIANT ⋀ Q}

• Useful for the implementor, not for the caller

1.9.2019 10



Example
class Date
{
public

setDay( int day );
private

int d_;
int m_;
int y_;

};

1.9.2019 11

• Invariant?
•Precondition?
•Postcondition?



C++20: Contracts
• C++20 enables writing pre and post conditions and invariants as 
part of the code

double sqrt(double x) [[expects: x >= 0]];
void sort(vector<emp>& v) [[ensures audit: 
is_sorted(v)]];

1.9.2019 12



C++20: Contracts

int push(queue& q, int val)
[[ expects: !q.full() ]] 
[[ ensures: !q.empty() ]]
{ 
... 
[[assert: q.is_ok() ]]
... 

}

1.9.2019 13



Conditions in C++ standard

1.9.2019 14



Conditions in C++ standard

1.9.2019 15



Design by Contract: 
documentation



Documentation

1.9.2019 17

What do you know about the behavior of the 
operator [] based on documentation?



Hiding the implementation
• Pre- and postconditions will be documented in a form that can 
be understood by users

• If a class tests the conditions or invariant, test will be written 
based on internal implementation

1.9.2019 18



Documentation: Doxygen

1.9.2019 19



Documentation: Doxygen

1.9.2019 20



Documentation: Doxygen
/**
... text ... */ 
or
/*! 
... text ...
*/

1.9.2019 21



Documentation: Doxygen
\pre { precondition } 
\post { postcondition } 
\throw <exception_object> { exception } 
\invariant { invariant }

1.9.2019 22



Using contracts
• Lectures typically give only simple examples
• In practice:

•Do not scale well
•Specification that is mathematically exact is difficult (and 
usually unnecessary)

• Inheritance brings difficulties

1.9.2019 23



Other contracts and practices



Coding
conventions
Improve readability
Things to be agreed
• Comments (e.g. Doxygen)
• Indentations
• Length of rows
• Naming
• Coding practices and principles, rules of thumb
• Style issues

1.9.2019 25



Pair programming
• Originates from eXtreme Programming
• Two programmers: controller and observer

• Improves quality: decreases errors
• Team work and communication
• Learning

1.9.2019 26



Code review
Reading code and examining:
• Does it do what is should do? 
• Does it follow coding conventions?
• Does it have errors?

1.9.2019 27

Fig: osnews.com/Thom Holwerda



Design by Contract: testing

1.9.2019 28



Design by contract and testing
• Complements regular testing strategies: unit testing, integration 
testing, system testing

• Testing also preconditions
• Integration testing for free
• Support for debugging: contract violations help locating errors

1.9.2019 29



Testing conditions: C++
Assert macro in C++ tests conditions and crashes the program if 
the condition is false

NDEBUG ⇒ assert does nothing

1.9.2019 30

#include <cassert>
void f( int i )
{ assert( i >= 0 );}



Invariant
inline void OrderedTable::Invariant()
{
#ifndef NDEBUG

// Invariant: items are always ordered such that index 1 contains the 
smallest item and

// index SIZE contains the largest one
for( int i = 1; i < SIZE; i++ )
{

if( item[ i ] > item[ i+1 ] )
throw OrderedTable::InvariantBroken();

}
#endif
}
void OrderedTable::searchAndChange( Item const& wanted, Item const& 
substitution )
{

Invariant();
// Actual implementation
Invariant();

}

1.9.2019 31



Testing conditions: Qt
Qt provides more functions/macros
•#include <QtGlobal>
•Q_ASSERT macro

• Can be taken off: QT_NO_DEBUG

1.9.2019 32

void Q_ASSERT(bool test)
void Q_ASSERT(bool test, const char* where, const
char* what)



Testing conditions: Qt
int divide(int a, int b)
{

Q_ASSERT(b != 0);
return a / b;

}
⇒ ASSERT: "b == 0" in file div.cpp, line 7

1.9.2019 33



Testing conditions: Qt
Correspondingly:

Q_ASSERT_X(b != 0, "divide", "division by 
zero");

return a / b;

⇒ ASSERT failure in divide: "division by zero", 
file div.cpp, line 7

1.9.2019 34


