Interfaces:
Design by Contract

2.9.2019

C 7] Tampereen yliopisto
Tampere University

A good interface?

Complete
*Beautiful
*Cute

“m\

Fig: clement127 (CC BY-NC-ND 2.0)

Fig: Clement127 (CC BY-NC-ND 2.0)

1.9.2019 2

(

~ ") Tampereen yliopisto
e

Tampere University

Where do the interfaces come from?

Main steps in designing a program:
Component

* identification

 responsibilities

e connections

« Specifying interfaces

1.9.2019 3

(

I) Tampereen yliopisto
Tampere University

Interface specification

* What is the use allowed by an interface?

* \What do the functions behind an interface promise to do?
* \What kind of errors are possible in the functions?

* How to test an interface?

1.9.2019 4

(

~ ") Tampereen yliopisto
e

Tampere University

Design by Contract

preconditions

* A clean metaphor ot vallel
to guide the f\n\w//\

design process HH component

side effects

postconditions

\ L/

output values

Fig: Fabuio (Own work) [CCO], via Wikimedia Commons

1.9.2019 5

(

I) Tampereen yliopisto
Tampere University

Design by contract

Interface specification given as a contract

* Client (caller) and supplier (implementor)

* Mutual obligations and benefits

Contract between an interface and its user

* Responsibility of a caller: how the interface is allowed to be
used? (precondition)

* Responsibility of an implementor: what does an interface
promise to do? (postcondition)

 Specification of errors

{P} o.service() {Q}

1.9.2019 6

(

I) Tampereen yliopisto
Tampere University

Precondition

* Must be true before a service

 Caller is responsible on fulfillment

* “When/how to call a service?” or “What does the service
expect?”

‘E.g. {a<10 A b<20}

1.9.2019 7

(

I) Tampereen yliopisto
Tampere University

Postcondition

* Must be true after the service
* Implementor is responsible on fulfillment

* “What does a service promise to do” or “What does it
guarantee?”

* Violation of postcondition leads to an exception
‘E.g. {j<30 A a<10 A b<20}

1.9.2019 8

(

I) Tampereen yliopisto
Tampere University

Obligations

Client

 Takes care of fulfilling the precondition

 Preconditions can be checked during testing, not in the final
program

Supplier

 Takes care of fulfilling the postcondition

* No more checks of the obligations of the caller

* If the service fails (violation of the postcondition) = exception, to
be informed about

1.9.2019 9

(

I) Tampereen yliopisto
Tampere University

(Class) invariant

Logical assertion that is held to always be true (during a certain

phase of the execution)
* Tests if an object is valid or “in its right mind”
* Must be true between the calls

{CLASS_INVARIANT A P} o.service() {CLASS_INVARIANT A Q}

» Useful for the implementor, not for the caller

1.9.2019 10

(

I) Tampereen yliopisto
Tampere University

Example

class Date

{

public e Invariant?
setDay(int day); - Precondition?

private ¢ 4 - Postcondition?
int d_;

int m_;
int vy ;
rs

192019 M

(

I) Tampereen yliopisto
Tampere University

C++20: Contracts

« C++20 enables writing pre and post conditions and invariants as
part of the code

double sqrt(double x) [[expects: x >= 0]];

void sort(vector<emp>& v) [[ensures audit:
is_sorted(v)1];

1.9.2019 12

(

I) Tampereen yliopisto
Tampere University

C++20: Contracts

int push(queue& g, int val)
[[expects: 'q.full()]]
[[ensures: 'q.empty() 1]

{

[[assert: g.is_ok() 1]

1.9.2019 13

(

= Tampereen yliopisto
Tampere University

Conditions in C++ standard

25.4.3.4 binary_search [binary.search)|

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);
1 Requires: The elements e of [first,last) are partitioned with respect to the expressions e < value
and !(value < e) or comp(e, value) and !comp(value, e). Also, for all elements e of [first,
last), e < value implies ! (value < e) or comp(e, value) implies !comp(value, e).

< Returns: true if there is an iterator i in the range [first,last) that satisfies the corresponding condi-
tions: ! (*i < value) && !(value < *i) or comp(*i, value) == false && comp(value, *i) ==
false.

3 Complexity: At most log2(last - first) + €(1) comparisons.

1.9.2019 14

(

= Tampereen yliopisto
Tampere University

Conditions in C++ standard

25.4.1.1 sort [sort]
template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>

void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) ;

Effects: Sorts the elements in the range [first,last).

Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (17.6.3.2). The

type of *first shall satisfy the requirements of MoveConstructible (Table 20) and of MoveAssignable
(Table 22).

Complexity: €(Nlog(N)) (where N == last - first) comparisons.

1.9.2019 15

Design by Contract:
documentation

(

= Tampereen yliopisto
Tampere University

Documentation

mapped_type& operator[](const key_type& k);
mapped_type& operator [] (key_type&& k) ;

1 Requires: mapped_type shall be DefaultInsertable into *this. For the first operator, key_type shall
be CopyInsertable into *this. For the second operator, key_type shall be MoveConstructible.

2 Effects: If the unordered_map does not already contain an element whose key is equivalent to k, the
first operator inserts the value value_type(k, mapped_type()) and the second operator inserts the
value value_type(std: :move(k), mapped_type()).

3 Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.

4 Complexity: Average case €(1), worst case O (size()).

What do you know about the behavior of the
operator [] based on documentation?

1.9.2019

17

(

I) Tampereen yliopisto
Tampere University

Hiding the implementation

* Pre- and postconditions will be documented in a form that can
be understood by users

o |If a class tests the conditions or invariant, test will be written
based on internal implementation

1.9.2019 18

CI'

Tampereen yliopisto
Tampere University

Documentation: Doxygen

Home

Downloads

Donate
€ (EUR)

Documentation | Extensions | Support |

Doxygen Manual

Overview

Installation

Getting started

Documenting the code

Markdown support

Standard Markdown

Paragraphs
Headers

Block quotes
Lists

Code Blocks
Horizontal Rulers
Emphasis

code spans

Links

Images

Automatic Linking

Markdown Extensions

Doxygen specifics

Neahuanina af nrahlemc

Doxygen usage

Doxygen is a command line based utility. Calling doxygen with the --help option at the command line will give you a brief description of the
usage of the program.

All options consist of a leading character -, followed by one character and one or more arguments depending on the option.
To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see section Special comment blocks).

2. You generate a configuration file (see section Configuration) by calling doxygen with the -g option:

doxygen -g <config file>

3. You edit the configuration file so it matches your project. In the configuration file you can specify the input files and a lot of optional
information.
4. You let doxygen generate the documentation, based on the settings in the configuration file:

doxygen <config file>

If you have a configuration file generated with an older version of doxygen, you can upgrade it to the current version by running doxygen with the
-u option.

1.9.2019

19

(

= Tampereen yliopisto
Tampere University

Documentation: Doxygen

KDE API Reference

KDE API Reference

Navigation APl Reference Index
The reference guides for the KDE APIs -- for KDE2 all the way to the current development version -- are
Main Page collected here. We assume you are already familiar with the excellent Qt4 documentation. TechBase is the
Old KDE4 Versions right place to start looking for general development information for KDE. There are only reference guides
here.

Related

To obtain a gzip compressed tar file containing the documentation, click on the &) images, which are

API Doc Tutorial immediately adjacent to many of the listed items.

KDE TechBase To obtain a version of the documentation for use in Digia Qt Assistant, click on the "[qch]" links, which are
KDE CMake Modules immediately adjacent to some of the listed items. (In Qt assistant, go into Edit->Preferences-
Extra CMake Modules >Documentation and [Add] the .qch file.)

Search Man pages are also provided for some modules. Click on the "[man]" links, also immediately adjacent to
some of the listed items to download a bzip2 compressed tar file containing the man pages for the
| corresponding module. (Uncompress and untar thes files into a standard MANPATH directory.)

|search term

ALL Frameworks Others
ALL .
- B frameworks5 [gch][man] o Other KDE Software
o KDE4 Versions

e KDE3 and older versions

1.9.2019 20

(

I) Tampereen yliopisto
Tampere University

Documentation: Doxygen

/%
. text ... x/
or
/x|
. text ...

192019 21

(

I) Tampereen yliopisto
Tampere University

Documentation: Doxygen

\pre { precondition }

\post { postcondition }

\throw <exception_object> { exception }
\invariant { invariant }

1.9.2019 22

(

I) Tampereen yliopisto
Tampere University

Using contracts

* Lectures typically give only simple examples

* In practice:
* Do not scale well

* Specification that is mathematically exact is difficult (and
usually unnecessary)

* Inheritance brings difficulties

1.9.2019 23

Other contracts and practices

(

= Tampereen yliopisto
Tampere University

COdlng _ HOW TO WRITE GOOD CODE:

conventions s

Improve readability RN

Things to be agreed N

« Comments (e.g. Doxygen) - PSRN

* Indentations o m:Lmsr,err‘s

- Length of rows %ﬁ?ﬁ?ﬁ@

* Naming

» Coding practices and principles, rules of thumb v D 7

- Style issues e ey T
500D
CoDE

1.9.2019 25

(

= Tampereen yliopisto
Tampere University

Pair programming

* Originates from eXtreme Programming

» Two programmers: controller and observer
* Improves quality: decreases errors
« Team work and communication
* Learning

1.9.2019 26

(

= Tampereen yliopisto
Tampere University

COde reVieW A Fig: osnews.com/Thom Holwerda

T
" h @ OMY VALicl meatiice monr =
| i) g =] ! A\ t I -,“L \T&(r A't;,‘ r\/ ’

Reading code and examining: OF Code Quacity: WTFs/mivuTe

S

——

e Does it do what is should do? * =
* Does it follow coding conventions?
* Does it have errors? Wt

L

l — -

Goock code . BAd codle.

(c) 2008 Focus Shift/OSNews/Thom Holwerda - http://www.osnews.com/comics

1.9.2019 27

Design by Contract: testing

(

I) Tampereen yliopisto
Tampere University

Design by contract and testing

« Complements regular testing strategies: unit testing, integration
testing, system testing

* Testing also preconditions

* Integration testing for free

» Support for debugging: contract violations help locating errors

1.9.2019 29

(

I) Tampereen yliopisto
Tampere University

Testing conditions: C++

Assert macro in C++ tests conditions and crashes the program if
the condition is false

#include <cassert>
void f(int i)
{ assert(i >=0);}

NDEBUG = assert does nothing

1.9.2019 30

(

= Tampereen yliopisto
Tampere University

Invariant

inline void OrderedTable::Invariant()

#ifndef NDEBUG . . .
/ Invariant: items are always ordered such that index 1 contains the

smallest item and
// index SIZE contains_the largest one
for(int i = 1; 1 < SIZE; i++

if(item[i] > item] i+1 1)
throw OrderedTable::InvariantBroken();

}
#endif
F
void OrderedTable::searchAndChange(Item const& wanted, Item consté&
?ubstitution)
Invariant();

// Actual implementation
Invariant();

192019 3

(

I) Tampereen yliopisto
Tampere University

Testing conditions: Qt

Qt provides more functions/macros
«#include <QtGlobal>
*Q_ASSERT macro

* Conile (riegceRTUho80_ReSUD

void Q ASSERT(bool test, const charx where, const
charx what)

1.9.2019 32

(

I) Tampereen yliopisto
Tampere University

Testing conditions: Qt

int divide(int a, int b)

{
Q_ASSERT(b !'= 0);
return a / b;
}
= ASSERT: "b == 0" in file div.cpp, line 7

1.9.2019 33

(

I) Tampereen yliopisto
Tampere University

Testing conditions: Qt

Correspondingly:

Q _ASSERT X(b != @, "divide", "division by
zero"):

return a / b;

- ASSERT failure 1in divide: "division by zero",
file div.cpp, line 7

1.9.2019 34

