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What is testing?
•Testing produces information: 

•Untested code is assumed to be broken
•Testing brings information about the quality of the code to 
make better decisions

•Why test a program?
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Why should I test?
•Testing indicates if

• the program does what it should not do 
• the program does not do what it should do
• the program works against the requirements (which one is 
wrong?)

• the program is difficult to understand or use, is slow, or works 
in an unexpected way 

•Everything cannot be tested
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Aim: to reveal errors
•Assumption: program always has errors, the task is to 
find them

•Starting point: a successful test causes a failure in 
program execution
Ø eliminating an error increases quality
Ø finding out the origin of an error: root reason and technical 
debt
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Essential terms
• Error: a deviation from the 
specification 

• Fault, defect: caused by 
execution of erroneous code or 
an unimplemented functionality

• Failure: an externally 
observable event in the 
functionality, due to a fault

6.9.2019 4

Kuva: Joeks (CC BY-NC 2.0)

• Bug: can stand for any of the 
previous terms



Different ways to test
•Dynamic testing: executing the program with suitable 
input

•Static testing: inspecting the source code and/or 
documentation

•Positive testing: “happy case” tests, trying to ensure that
the program does what it should do

•Negative testing: “unhappy case” tests, i.e. cases which
are not described in the specification, erroneous cases etc.
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How to test?
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A good test case
•A small test for program functionality:

•What to test? E.g. division operator of a calculator
•A good input? E.g. division by zero
•Expected result? E.g. an error message, something else than 
program crash

•Designed either before execution or “on the fly”
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The structure of a test case
1. Set-up

•put the system in the state needed to run the test
2. Execution

• run the system and capture all output
3. Evaluation

•compare the results to the expected results and judge
4. Clean-up

• restore the system to the pre-test state
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Unit testing
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Testing a program
•Aim: self-testing code

•sufficient tests form a part of 
a working program

•continuous reliability on that
bugs will be found

•avoiding regression
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Unit testing in practice
•What to test?
•How to test?
•Who tests?
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Programmer as tester
•A good programmer can 
test their own code
•programmer is responsible 
for testing the program units 
implemented by 
himself/herself

• often also quality assurance 
tasks for other 
programmers’ code

6.9.2019 12

Kuva: sleepymyf (CC BY-NC-ND 2.0)



Unit testing
•Part of unit implementation: test the implementation as 
early as possible

•Use interface as a view (encapsulation)
•Test Driven Development:

• create a test to be run automatically (and run it)
•write code and run the test
• fix and refactor the code
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Refactoring
•Does not change the external behavior
• Improves the structure and non-functional attributes
Ø decreases technical debt
Ø may resolve hidden, undiscovered bugs

•Comments
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Comments
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/* if allocation flag is zero */
if ( alloc_flag == 0 )

/* if allocating new member */
if ( alloc_flag == 0 )

/* if allocating new member */
if ( alloc_flag == NEW_MEMBER )

(useless)



Testing boundary values
•To be tested:

•boundary values of parameters and return values
•boundary values of loops
•boundary values related to data structures
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Equivalence Partitioning
•Division of input into equivalence classes

•Select a condition from the input
•Divide into classes
•Basic division: allowed and not allowed
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Implementing unit testing
•Small, clear test functions and simple checks in them

•assertions of a test framework in test code

TEST_TYPE test_square_root() { 
double result = my_sqrt(x);
ASSERT_TRUE((result * result) == x);
// Can you find a small bug in test code? 
// for simplicity ... 

}
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Unit testing in practice
•Test code is code that should be

•documented
• tested
•maintained
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Unit testing
1. What is extremely important for a method
2. Test the most usual cases
3. Be creative
4. Concentrate on the interface
5. Make tests as simple as possible
6. Use test framework

6.9.2019 20



Integration testing
• After unit testing, units will be integrated into large wholes
• Version control enables each developer to see the whole program
• Test automation and continuous integration
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Continuous
integration
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New code Version 
control

Autom.
CI

• Build
• Unit
• Integration

Fig: Jenkins



What to test?
•Equivalence partition
•Boundary value analysis
•Static analysis

BE CREATIVE!
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Errors found?
•Syntax errors
•Uninitialized variables
•Return values not used
•Erroneous use of pointers
•Same code in several places, dead code
•Problems in maintenance and porting
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