Software testing

9.9.2018

(

I) Tampereen yliopisto
Tampere University

What is testing?

* Testing produces information:
* Untested code is assumed to be broken

* Testing brings information about the quality of the code to
make better decisions

*\Why test a program?

6.9.2019 1

(

I) Tampereen yliopisto
Tampere University

Why should | test?

* Testing indicates if
the program does what it should not do
the program does not do what it should do
*the program works against the requirements (which one is
wrong?)
*the program is difficult to understand or use, is slow, or works
In an unexpected way

*Everything cannot be tested

6.9.2019 2

(

I) Tampereen yliopisto
Tampere University

Aim: to reveal errors

* Assumption: program always has errors, the task is to
find them

« Starting point: a successful test causes a failure in
program execution

» eliminating an error increases quality

» finding out the origin of an error: root reason and technical
debt

6.9.2019 3

(

= Tampereen yliopisto
Tampere University

Essential terms

* Error: a deviation from the
specification

* Fault, defect: caused by
execution of erroneous code or
an unimplemented functionality

* Failure: an externally
observable event in the
functionality, due to a fault

« Bug: can stand for any of the
previous terms

Kuva: Joeks (CC BY-NC 2.0)

6.9.2019

4

(

I) Tampereen yliopisto
Tampere University

Different ways to test
*Dynamic testing: executing the program with suitable
input

« Static testing: inspecting the source code and/or
documentation

*Positive testing: “happy case” tests, trying to ensure that
the program does what it should do

*Negative testing: “unhappy case’ tests, i.e. cases which

are not described in the specification, erroneous cases etc.

6.9.2019 5

(

I) Tampereen yliopisto
Tampere University

How to test?

aut
Kuva: Zhao! (CC BY 2.0)

6.9.2019 6

(

I) Tampereen yliopisto
Tampere University

A good test case

* A small test for program functionality:
* What to test? E.g. division operator of a calculator
* A good input? E.g. division by zero
« Expected result? E.g. an error message, something else than
program crash

*Designed either before execution or “on the fly”

6.9.2019 7

(

I) Tampereen yliopisto
Tampere University

The structure of a test case

1. Set-up
* put the system in the state needed to run the test

2. Execution
run the system and capture all output

3. Evaluation
e compare the results to the expected results and judge

4. Clean-up
e restore the system to the pre-test state

6.9.2019 8

(

= Tampereen yliopisto
Tampere University

Unit testing

6.9.2019

(

I) Tampereen yliopisto
Tampere University

Testing a program

* Aim: self-testing code

e sufficient tests form a part of
a working program

* continuous reliability on that
bugs will be found

e avoiding regression

73 S
oﬁﬁ

Kuva: Martin Fowler

6.9.2019 10

(

I) Tampereen yliopisto
Tampere University

Unit testing in practice

*\What to test?
*How to test?
*\WWho tests?

Kuva: sleepymyf (CC BY-NC-ND 2.0)

(

I) Tampereen yliopisto
Tampere University

Programmer as tester

* A good programmer can
test their own code

e programmer is responsible
for testing the program units
Implemented by
himself/herself

» often also quality assurance
tasks for other
programmers’ code

Kuva: sleepymyf (CC BY-NC-ND 2.0)

(

I) Tampereen yliopisto
Tampere University

Unit testing

* Part of unit implementation: test the implementation as
early as possible

*Use interface as a view (encapsulation)

* Test Driven Development:

e create a test to be run automatically (and run it)
*write code and run the test

* fix and refactor the code

6.9.2019 13

(

I) Tampereen yliopisto
Tampere University

Refactoring

*Does not change the external behavior

*Improves the structure and non-functional attributes
» decreases technical debt
» may resolve hidden, undiscovered bugs

e Comments

6.9.2019 14

Comments

/* if allocation flag is zero */
if (alloc_flag==0)

/* if allocating new member */

if (alloc_flag ==0)

/[* if allocating new member */
if (alloc_flag == NEW_MEMBER)

(useless)

6.9.2019 15

Er Tampereen yliopisto
Tampere University

Testing boundary values

* To be tested:

* boundary values of parameters and return values
* boundary values of loops
* boundary values related to data structures

6.9.2019

(

I) Tampereen yliopisto
Tampere University

Equivalence Partitioning

*Division of input into equivalence classes
*Select a condition from the input
*Divide into classes
*Basic division: allowed and not allowed

| 17

é|' Tampereen yliopisto
Tampere University

Implementing unit testing

*Small, clear test functions and simple checks in them
e assertions of a test framework in test code

TEST_TYPE test_square_root() {
double result = my _sqrt(x);
ASSERT _TRUE((result * result) == x);
// Can you find a small bug in test code?
// for simplicity ...

6.9.2019

(

I) Tampereen yliopisto
Tampere University

Unit testing in practice

e Test code Is code that should be
documented

 tested
* maintained

6.9.2019 19

Unit testing

2Rl o

What is extremely important for a method
Test the most usual cases

Be creative

Concentrate on the interface

Make tests as simple as possible

Use test framework

ﬂ"|' Tampereen yliopisto
Tampere University

Integration testing

« After unit testing, units will be integrated into large wholes
 Version control enables each developer to see the whole program
 Test automation and continuous integration

6.9.2019

(Fig: Jenkins

= Tampereen yliopisto
Tampere University

Continuous
integration

PROJ-TBDW

Y
M

New code . Autom.
Version

control

Cl

\ 4
v

N~

* Build

Created by Swen-Peter Ekkebus > o U n |t
from Noun Project

« Integration

6.9.2019 22

= D Tampereen yliopisto
Tampere University

What to test?

* Equivalence partition
*Boundary value analysis
e Static analysis

BE CREATIVE!

6.9.2019 283

(

I) Tampereen yliopisto
Tampere University

Errors found?

*Syntax errors

* Uninitialized variables

*Return values not used

*Erroneous use of pointers

«Same code in several places, dead code
*Problems in maintenance and porting

6.9.2019 24

