
Software testing
9.9.2018

What is testing?
•Testing produces information:

•Untested code is assumed to be broken
•Testing brings information about the quality of the code to
make better decisions

•Why test a program?

6.9.2019 1

Why should I test?
•Testing indicates if

• the program does what it should not do
• the program does not do what it should do
• the program works against the requirements (which one is
wrong?)

• the program is difficult to understand or use, is slow, or works
in an unexpected way

•Everything cannot be tested

6.9.2019 2

Aim: to reveal errors
•Assumption: program always has errors, the task is to
find them

•Starting point: a successful test causes a failure in
program execution
Ø eliminating an error increases quality
Ø finding out the origin of an error: root reason and technical
debt

6.9.2019 3

Essential terms
• Error: a deviation from the
specification

• Fault, defect: caused by
execution of erroneous code or
an unimplemented functionality

• Failure: an externally
observable event in the
functionality, due to a fault

6.9.2019 4

Kuva: Joeks (CC BY-NC 2.0)

• Bug: can stand for any of the
previous terms

Different ways to test
•Dynamic testing: executing the program with suitable
input

•Static testing: inspecting the source code and/or
documentation

•Positive testing: “happy case” tests, trying to ensure that
the program does what it should do

•Negative testing: “unhappy case” tests, i.e. cases which
are not described in the specification, erroneous cases etc.

6.9.2019 5

How to test?

6.9.2019 6

Kuva: Zhao! (CC BY 2.0)

A good test case
•A small test for program functionality:

•What to test? E.g. division operator of a calculator
•A good input? E.g. division by zero
•Expected result? E.g. an error message, something else than
program crash

•Designed either before execution or “on the fly”

6.9.2019 7

The structure of a test case
1. Set-up

•put the system in the state needed to run the test
2. Execution

• run the system and capture all output
3. Evaluation

•compare the results to the expected results and judge
4. Clean-up

• restore the system to the pre-test state

6.9.2019 8

Unit testing

6.9.2019 9

Testing a program
•Aim: self-testing code

•sufficient tests form a part of
a working program

•continuous reliability on that
bugs will be found

•avoiding regression

6.9.2019 10

Kuva: Martin Fowler

Unit testing in practice
•What to test?
•How to test?
•Who tests?

6.9.2019 11
Kuva: sleepymyf (CC BY-NC-ND 2.0)

Programmer as tester
•A good programmer can
test their own code
•programmer is responsible
for testing the program units
implemented by
himself/herself

• often also quality assurance
tasks for other
programmers’ code

6.9.2019 12

Kuva: sleepymyf (CC BY-NC-ND 2.0)

Unit testing
•Part of unit implementation: test the implementation as
early as possible

•Use interface as a view (encapsulation)
•Test Driven Development:

• create a test to be run automatically (and run it)
•write code and run the test
• fix and refactor the code

6.9.2019 13

Refactoring
•Does not change the external behavior
• Improves the structure and non-functional attributes
Ø decreases technical debt
Ø may resolve hidden, undiscovered bugs

•Comments

6.9.2019 14

Comments

6.9.2019 15

/* if allocation flag is zero */
if (alloc_flag == 0)

/* if allocating new member */
if (alloc_flag == 0)

/* if allocating new member */
if (alloc_flag == NEW_MEMBER)

(useless)

Testing boundary values
•To be tested:

•boundary values of parameters and return values
•boundary values of loops
•boundary values related to data structures

6.9.2019

16

Equivalence Partitioning
•Division of input into equivalence classes

•Select a condition from the input
•Divide into classes
•Basic division: allowed and not allowed

| 17

1. 2.
3.

Implementing unit testing
•Small, clear test functions and simple checks in them

•assertions of a test framework in test code

TEST_TYPE test_square_root() {
double result = my_sqrt(x);
ASSERT_TRUE((result * result) == x);
// Can you find a small bug in test code?
// for simplicity ...

}

6.9.2019

18

Unit testing in practice
•Test code is code that should be

•documented
• tested
•maintained

6.9.2019 19

Unit testing
1. What is extremely important for a method
2. Test the most usual cases
3. Be creative
4. Concentrate on the interface
5. Make tests as simple as possible
6. Use test framework

6.9.2019 20

Integration testing
• After unit testing, units will be integrated into large wholes
• Version control enables each developer to see the whole program
• Test automation and continuous integration

6.9.2019

21

Continuous
integration

6.9.2019 22

New code Version
control

Autom.
CI

• Build
• Unit
• Integration

Fig: Jenkins

What to test?
•Equivalence partition
•Boundary value analysis
•Static analysis

BE CREATIVE!

6.9.2019 23

Errors found?
•Syntax errors
•Uninitialized variables
•Return values not used
•Erroneous use of pointers
•Same code in several places, dead code
•Problems in maintenance and porting

6.9.2019 24

