
Abstract Base Classes
Inheritance

20.9.2018



Abstract base classes
•Include no member variables nor implementations 
for member functions
•To be used only as a base class
•Cannot be instantiated
•Typically includes interface functions with no 
(sufficient) implementation

18.9.2019 1



Abstract base classes
•To reveal:

•pure hierarchic interface
•To hide:

•the implementation of interface functions is
deferred into concrete classes

18.9.2019 2



Interface 
classes

18.9.2019 3

Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

<<interface>>
Movable

move() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

<<interface>>
Oviparous

layEgg() {abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Movable

Oviparous

Hen

reproduce()
sing()
move()



Interface class definition
class Movable
{
public:

// Compiler generates the empty default
//constructor automatically
virtual ~Movable() { } // Empty virtual destructor

// inside definition (inline)
virtual void move(Location destination) = 0;

};

18.9.2019 4



Inheritance
A property in object-oriented programming, where
a new class is constructed based on an existing
one
•Subclass (inherited class) includes features of the
base class (attributes and interface)

•Subclass can add new features and change the
features of the base class

18.9.2019 5



“is-a” relationship
•An important property in object-oriented 
programming and design

•Interface of an inherited class is by default the 
same as that of the base class ⇒ an object of the 
inherited class is an instance of the base class 
(an extended version of it)

18.9.2019 6



Inheritance and interfaces

18.9.2019 7

Book

LibraryBook

<<interface>>
UDCCoding

UDCShelfClass()
UDCString()
UDCCode()

SQLStorage



Inheritance terms
•Inheritance, derivation
•Inheritance hierarchy
•Base class, superclass, parent class
•Subclass, derived class
•Ancestor
•Descendant

18.9.2019 8



Inheritance
•Classification and categorization are natural for 
humans

•Applied widely in science, languages, etc.
•Object-oriented programming:

•Classification based on common interfaces
•Classification based on common implementation

•In many languages, the above two are the same 
mechanism: inheritance

18.9.2019 9



Class
hierarchy

18.9.2019 10

Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Hen

reproduce()
sing()
move()



Class hierarchy
•Different roles of classes:

•Interface classes
•only pure virtual methods

•Abstract base classes
•at least one pure virtual method

•Concrete classes
•no pure virtual methods

18.9.2019 11



Class hierarchies
•Upper level classes of a hierarchy

•“hypernyms”
•Prescribe the interface of lower level classes
•Polymorphism: allows referencing to objects 
with a “common name”

18.9.2019 12



Class hierarchies
•Lower level classes in a hierarchy

•Service implementation
•Specialization
•Dynamic binding

18.9.2019 13



Class
hierarchies

18.9.2019 14

Employee

Grant-paid

Employee

Paid by doctoral
programmeHourly-paid Monthly-paid

Assistant Lecturer Professor Researcher Doctoral
candidate

Teaching staff Research staff

Assistant Lecturer Professor Researcher
Doctoral
candidate



Inheritance and reuse
•Classes typically have common features
•Generalization

•Common features can be written in one class 
(base class)

•Common features can be taken in other classes 
(subclasses) by inheriting them

18.9.2019 15



Inheritance and reuse
•Subclass need not rewrite the services 
implemented in the base class
•Reuse of the program code ⇒ no need to repeat 
the code

•Be careful about fragmentation of the code

18.9.2019 16



Inheritance and reuse

18.9.2019 17

Line LibraryComponent

Photo

Visibility

isVisible: bool
draw()
hide()

Circle



Inheritance in C++
•Subclass “inherits” all the features of the base 
class, and may add new ones
•all base class features cannot be accessed

•Multiple inheritance
•Visibility specifiers (public, private, protected) in 
inheritance
•visibility of the features
•inheritance type

18.9.2019 18



Inheritance and objects

18.9.2019 19

A
A’s features

B
(A’s features)
B’s features

C
(A’s features)
C’s features

D
(A’s features)
(C’s features)
D’s features

E
(A’s features)
(C’s features)
(D’s features)
E’s features

F
(A’s features)
(C’s features)
(D’s features)
F’s features

F object

A part

C part

D part

F part

C object

A part

C part



C++: Syntax of inheritance
class A {

// Features of A
};
class B : public A {

// Features that B has added (besides those of A)
};
class C : public A {

// Features that C has added (besides those of A)
};
class D : public C {

// Features that D has added (besides those of C)
};

18.9.2019 20



C++: Syntax of inheritance
// ...
class E : public D {

// Features that E has added (besides those of D)
};
class F : public D {

// Features that F has added (besides those of D)
};

18.9.2019 21


