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Abstract base classes
•Include no member variables nor implementations 
for member functions
•To be used only as a base class
•Cannot be instantiated
•Typically includes interface functions with no 
(sufficient) implementation
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Abstract base classes
•To reveal:

•pure hierarchic interface
•To hide:

•the implementation of interface functions is
deferred into concrete classes
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Interface 
classes
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Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

<<interface>>
Movable

move() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

<<interface>>
Oviparous

layEgg() {abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Movable

Oviparous

Hen

reproduce()
sing()
move()



Interface class definition
class Movable
{
public:

// Compiler generates the empty default
//constructor automatically
virtual ~Movable() { } // Empty virtual destructor

// inside definition (inline)
virtual void move(Location destination) = 0;

};
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Inheritance
A property in object-oriented programming, where
a new class is constructed based on an existing
one
•Subclass (inherited class) includes features of the
base class (attributes and interface)

•Subclass can add new features and change the
features of the base class
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“is-a” relationship
•An important property in object-oriented 
programming and design

•Interface of an inherited class is by default the 
same as that of the base class ⇒ an object of the 
inherited class is an instance of the base class 
(an extended version of it)
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Inheritance and interfaces
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Book

LibraryBook

<<interface>>
UDCCoding

UDCShelfClass()
UDCString()
UDCCode()

SQLStorage



Inheritance terms
•Inheritance, derivation
•Inheritance hierarchy
•Base class, superclass, parent class
•Subclass, derived class
•Ancestor
•Descendant
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Inheritance
•Classification and categorization are natural for 
humans

•Applied widely in science, languages, etc.
•Object-oriented programming:

•Classification based on common interfaces
•Classification based on common implementation

•In many languages, the above two are the same 
mechanism: inheritance
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Class
hierarchy
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Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Hen

reproduce()
sing()
move()



Class hierarchy
•Different roles of classes:

•Interface classes
•only pure virtual methods

•Abstract base classes
•at least one pure virtual method

•Concrete classes
•no pure virtual methods
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Class hierarchies
•Upper level classes of a hierarchy

•“hypernyms”
•Prescribe the interface of lower level classes
•Polymorphism: allows referencing to objects 
with a “common name”
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Class hierarchies
•Lower level classes in a hierarchy

•Service implementation
•Specialization
•Dynamic binding
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Class
hierarchies
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Doctoral
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Inheritance and reuse
•Classes typically have common features
•Generalization

•Common features can be written in one class 
(base class)

•Common features can be taken in other classes 
(subclasses) by inheriting them
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Inheritance and reuse
•Subclass need not rewrite the services 
implemented in the base class
•Reuse of the program code ⇒ no need to repeat 
the code

•Be careful about fragmentation of the code
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Inheritance and reuse
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Line LibraryComponent

Photo

Visibility

isVisible: bool
draw()
hide()

Circle



Inheritance in C++
•Subclass “inherits” all the features of the base 
class, and may add new ones
•all base class features cannot be accessed

•Multiple inheritance
•Visibility specifiers (public, private, protected) in 
inheritance
•visibility of the features
•inheritance type
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Inheritance and objects
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A
A’s features

B
(A’s features)
B’s features

C
(A’s features)
C’s features

D
(A’s features)
(C’s features)
D’s features

E
(A’s features)
(C’s features)
(D’s features)
E’s features

F
(A’s features)
(C’s features)
(D’s features)
F’s features

F object

A part

C part

D part

F part

C object

A part

C part



C++: Syntax of inheritance
class A {

// Features of A
};
class B : public A {

// Features that B has added (besides those of A)
};
class C : public A {

// Features that C has added (besides those of A)
};
class D : public C {

// Features that D has added (besides those of C)
};
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C++: Syntax of inheritance
// ...
class E : public D {

// Features that E has added (besides those of D)
};
class F : public D {

// Features that F has added (besides those of D)
};
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