
Class Hierarchies

Inheritance
•Classification and categorization are natural for
humans

•Applied widely in science, languages, etc.
•Object-oriented programming:

•Classification based on common interfaces
•Classification based on common implementation

•In many languages, the above two are the same
mechanism: inheritance

19.9.2019 1

Class
hierarchy

19.9.2019 2

Organism
{abstract}

reproduce() {abstract}

Bird
{abstract}

sing() {abstract}
layEgg()

Fungus
{abstract}

decompose() {abstract}

Mammal
{abstract}

breastfeed() {abstract}

SlimeMould
{abstract}

reproduce()
decompose()
move()

Animal
{abstract}

Human

reproduce()
move()
breastfeed()

Nightingale

reproduce()
sing()
move()

Platypus

reproduce()
move()
breastfeed()
layEgg()

Hen

reproduce()
sing()
move()

Class hierarchy
•Different roles of classes:

•Interface classes
•only pure virtual methods

•Abstract base classes
•at least one pure virtual method

•Concrete classes
•no pure virtual methods

19.9.2019 3

Class hierarchies
•Upper level classes of a hierarchy

•“hypernyms”
•Prescribe the interface of lower level classes
•Polymorphism: allows referencing to objects
with a “common name”

19.9.2019 4

Class hierarchies
•Lower level classes in a hierarchy

•Service implementation
•Specialization
•Dynamic binding

19.9.2019 5

Class
hierarchies

19.9.2019 6

Employee

Grant-paid

Employee

Paid by doctoral
programmeHourly-paid Monthly-paid

Assistant Lecturer Professor Researcher Doctoral
candidate

Teaching staff Research staff

Assistant Lecturer Professor Researcher
Doctoral
candidate

Inheritance and reuse
•Classes typically have common features
•Generalization

•Common features can be written in one class
(base class)

•Common features can be taken into use in other
classes (subclasses) by inheriting them

19.9.2019 7

Inheritance and reuse
•Subclass need not rewrite the services
implemented in the base class
•Reuse of the program code ⇒ no need to repeat
the code

•Be careful about fragmentation of the code

19.9.2019 8

Inheritance and reuse

19.9.2019 9

Line LibraryComponent

Photo

Visibility

isVisible: bool
draw()
hide()

Circle

Inheritance in C++
•Subclass “inherits” all the features of the base
class, and may add new ones
•all base class features cannot be accessed

•Multiple inheritance
•Visibility specifiers (public, private, protected) in
inheritance
•visibility of the features
•inheritance type

19.9.2019 10

Inheritance and objects

19.9.2019 11

A
A’s features

B
(A’s features)
B’s features

C
(A’s features)
C’s features

D
(A’s features)
(C’s features)
D’s features

E
(A’s features)
(C’s features)
(D’s features)
E’s features

F
(A’s features)
(C’s features)
(D’s features)
F’s features

F object

A part

C part

D part

F part

C object

A part

C part

C++: Syntax of inheritance
class A {

// Features of A
};
class B : public A {

// Features that B has added (besides those of A)
};
class C : public A {

// Features that C has added (besides those of A)
};
class D : public C {

// Features that D has added (besides those of C)
};

19.9.2019 12

C++: Syntax of inheritance
// ...
class E : public D {

// Features that E has added (besides those of D)
};
class F : public D {

// Features that F has added (besides those of D)
};

19.9.2019 13

Inheritance
23.9.2019

Inheritance and scopes

19.9.2019 15

C object

newProtFunc

publFunc

privVarprotFunc

A part

protected

newPublFuncC part

protected private

newPrivVar

public

public

private

newProtFunc

Inheritance and constructors
•Base class and the “additional part” of a subclass
•Subclass has no access to the private part of the
base class

•Work distribution:
•Base class constructor – initialization of the base class
•Subclass constructor – call of base class constructor,
initialization of the additional part

•Order of construction goes top-down in the
hierarchy

19.9.2019 16

Base class constructor
class LogMessage
{
public:

LogMessage(string const& message);
// ...

private:
string message_;

};

LogMessage::LogMessage(string const& message) : message_(message)
{
}

19.9.2019 17

Subclass constructor
class DatedLogMessage : public LogMessage {
public:

DatedLogMessage(Date const& day, string const& message);
// ...

private:
Date day_;

};

DatedLogMessage::DatedLogMessage(Date const& day, string const&
message) : LogMessage(message), day_(day)
{
}

19.9.2019 18

Object creation
LogMessage message(“I went to the
movies.");

DatedLogMessage datedMessage(today(), “It
was bad.");

19.9.2019 19

Inheritance and destructors
•“Layers” as with constructors
•Work distribution:

•Subclass destructor – cleanup of the additional part
•Base class destructor – cleanup of the base class part

•Order of destruction goes bottom-up in the
hierarchy

•Called automatically
•Base class destructor must always be virtual

19.9.2019 20

Subclass object in relation to the base class
•Base class interface ⊂ subclass interface
⇒ subclass object is a valid base class object

•In pointers
•In references

•Is-a: “the type of a subclass object is also that of
the base class”

19.9.2019 21

Subclass object in relation to the base class
class BaseClass { … };
class Subclass : public BaseClass { … };
void function (BaseClass& baseObject);

BaseClass* b_p = 0;
Subclass subObject;
b_p = &subObject;
function(subObject);

19.9.2019 22

Inheritance as extension
•Subclass adds its own services
•Services of the base class as such

•enables reuse of code
•“Do not use inheritance in vain”
•Another way is to add services into the original
class

19.9.2019 23

Definition of class Book
class Book {
public:

Book(std::string const& title,
std::string const& author);

virtual ~Book();
std::string getTitle() const;
std::string getAuthor() const;

private:
std::string title_;
std::string author_;

};

19.9.2019 24

Implementation of Book
Book::Book(string const& t, string const& a) : title_(t),
author_(a) {

cout << “Book called " << title_ << " has been created" <<
endl;
}

Book::~Book() {
cout << “Book called " << title_ << " destructed" << endl;

}

string Book::getTitle() const {
return title_;

}
… 19.9.2019 25

Definition of class LibraryBook
class LibraryBook : public Book
{
public:

LibraryBook(std::string const& title,
std::string const& author, Date const& retDay);

virtual ~LibraryBook();
bool isLate(Date const& today) const;

private:
Date retDay_;

};

19.9.2019 26

Implementation of LibraryBook
LibraryBook::LibraryBook(string const& title, string const& author, Paivays
const& retDay) :

Book(title, author), retDay_(retDay) {
cout << “Library book called " << title << " has been created" << endl;

}

LibraryBook::~LibraryBook() {
cout << “Library book called " << getTitle() << " has been destructed" <<

endl;
}

bool LibraryBook::isLate(Date const& today) const {
return retDay_.howFarAhead(today) < 0;

}
…

19.9.2019 27

