

Making Complex Decisions

CHAPTER 17 IN THE TEXTBOOK

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

- Let the living reward R(s) be -0.04 in all states except in the terminal states
- In a deterministic environment, a solution would be easy: the agent will always reach + 1 with moves

$$[N, N, E, E, E]$$
$$[E, E, N, N, E]$$

Reward sum for both

$$5 \times -0.04 + 1 = 0.8$$

 But actions are unreliable, a sequence of moves will not always lead to the desired outcome

 Now the sequence [N N, E, E, E] leads to the goal state with probability

$$0.8^5 = 0.32768A$$

- In addition, the agent has a small chance of reaching the goal by accident going the other way around the obstacle
 - 2 x North fails land East
 - 2 x East fails land North
 - 1 x East succeeds

with a probability $0.1^4 \times 0.8$, for a grand total of 0.32776

Markov Decision Processes

- An MDP is defined by:
 - A set of states *s*∈*S*
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'|s,a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For MDPs, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, ..., S_0 = s_0)$$

$$= P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

Policies

- In deterministic single-agent search problems, we want an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax doesn't compute entire policies
 - It computes the action for a single state only

Optimal policy when R(s, a, s')= -0.03 for all non-terminals s

Optimal Policies

$$R(s) = -0.01$$

R(s) = -0.4

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

Example: Racing

• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

MDP Search Trees

• Each MDP state projects an expectimax-like search tree

Utilities of Sequences

Utilities of Sequences

 What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1 * 1 + 0.5 * 2 + 0.25 * 3
 - U([1,2,3]) < U([3,2,1])

Stationary Preferences

• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Quiz: Discounting

• Given:

a b c d e
 Actions: East, West, and Exit (only available in exit states a, e)

Transitions: deterministic

• Quiz 1: For γ = 1, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?

10		1

Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed *T* steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)

■ Discounting: use $0 < \gamma <_{\infty} 1$ (Sum of an infinite geometric series)

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- ■Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s, a, s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a): $Q^*(s, a)$ = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = optimal action from state s$

Snapshot of Demo – Gridworld V Values

Noise = 0.2Discount = 0.9Living reward = $0^{-1.24}$

Snapshot of Demo – Gridworld Q Values

Noise = 0.2Discount = 0.9Living reward = $0^{-1.25}$

Values of States

 Fundamental operation: compute the (expectimax) value of a state

- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computes!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - ullet Equivalently, it's what a depth-k expectimax would give from s

Noise = 0.2Discount = 0.9Living reward = 0^{-31}

Noise = 0.2Discount = 0.9Living reward = 0^{-32}

Noise = 0.2Discount = 0.9Living reward = $0^{-1.33}$

Noise = 0.2Discount = 0.9Living reward = 0^{-34}

k=4

Noise = 0.2Discount = 0.9Living reward = $0^{-1.35}$

k=5

Noise = 0.2Discount = 0.9Living reward = 0^{-36}

k=6

Noise = 0.2Discount = 0.9Living reward = $0^{-1.37}$

Noise = 0.2Discount = 0.9Living reward = $0^{-1.38}$

Noise = 0.2Discount = 0.9Living reward = 0^{-39}

k=9

Noise = 0.2 Discount = 0.9 Living reward = 0 | 40

k=10

Noise = 0.2Discount = 0.9Living reward = $0^{-1.41}$

k=11

Noise = 0.2Discount = 0.9Living reward = $0^{-1.42}$

k=12

Noise = 0.2Discount = 0.9Living reward = $0^{-1.43}$

k = 100

Noise = 0.2Discount = 0.9Living reward = $0^{-1.44}$

Computing Time-Limited Values

45