
Heredity

Description
Write an AI to assess the likelihood that a person will have a particular genetic trait.

Introduction
Mutated versions of the GJB2 gene are one of the leading causes of hearing impairment 
in newborns. Each person carries two versions of the gene, so each person has the 
potential to possess either 0, 1, or 2 copies of the hearing impairment version GJB2. 
Unless a person undergoes genetic testing, though, it’s not so easy to know how many 
copies of mutated GJB2 a person has. This is some “hidden state”: information that has 
an effect that we can observe (hearing impairment), but that we don’t necessarily 
directly know. After all, some people might have 1 or 2 copies of mutated GJB2 but not 
exhibit hearing impairment, while others might have no copies of mutated GJB2 yet still 
exhibit hearing impairment.

Every child inherits one copy of the GJB2 gene from each of their parents. If a parent has 
two copies of the mutated gene, then they will pass the mutated gene on to the child; if 
a parent has no copies of the mutated gene, then they will not pass the mutated gene on
to the child; and if a parent has one copy of the mutated gene, then the gene is passed 
on to the child with probability 0.5. After a gene is passed on, though, it has some 
probability of undergoing additional mutation: changing from a version of the gene that 
causes hearing impairment to a version that doesn’t, or vice versa.

We can attempt to model all of these relationships by forming a Bayesian Network of all 
the relevant variables, as in the one below, which considers a family of two parents and 
a single child.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1285178/


Each person in the family has a Gene random variable representing how many copies of a
particular gene (e.g., the hearing impairment version of GJB2) a person has: a value that 
is 0, 1, or 2. Each person in the family also has a Trait random variable, which 
is yes or no depending on whether that person expresses a trait (e.g., hearing 
impairment) based on that gene. There’s an arrow from each person’s Gene variable to 
their Trait variable to encode the idea that a person’s genes affect the probability that 
they have a particular trait. Meanwhile, there’s also an arrow from both the mother and 
father’s Gene random variable to their child’s Gene random variable: the child’s genes are 
dependent on the genes of their parents.

Your task in this project is to use this model to make inferences about a population. 
Given information about people, who their parents are, and whether they have a 
particular observable trait (e.g. hearing loss) caused by a given gene, your AI will infer 
the probability distribution for each person’s genes, as well as the probability distribution
for whether any person will exhibit the trait in question.

Mathematical Dive and Deeper Understanding of the Problem
This exercise is an example of “inference by enumeration”, in which conditional 
probabilities could be computed for query variables given the evidence (i.e. the evidence
variables) by marginalization over all the other hidden variables (i.e. by adding together 
all the possible enumerations of the joint probability).

The query variable is the variable for which we are trying to compute/predict the 
probability. In this problem, this query variable could be the probability that the child 
exhibits the trait. The evidence then could be the observations we make about the 
child’s parents on whether or not they exhibit the trait. Finally, the hidden variables 
could in this case be the number of copies of genes the parents or the child have. 

To draw an analogy to help understand the normalization constant α , recall the law you 
already know: P(A,B)=P(A|B)*P(B). In that case, the joint probability was 
scaled/normalized by P(B).

Understanding the Environment
Take a look at one of the sample data sets in the data directory by opening 
up data/family0.csv (you can open it up in a text editor, or in a spreadsheet application 
like Google Sheets, Excel, or Apple Numbers). Notice that the first row defines the 
columns for this CSV file: name, mother, father, and trait. The next row indicates that 



Harry has Lily as a mother, James as a father, and the empty cell for trait means we 
don’t know whether Harry has the trait or not. James, meanwhile, has no parents listed in
the our data set (as indicated by the empty cells for mother and father), and does exhibit 
the trait (as indicated by the 1 in the trait cell). Lily, on the other hand, also has no 
parents listed in the data set, but does not exhibit the trait (as indicated by the 0 in 
the trait cell).

Open up heredity.py and take a look first at the definition of PROBS. PROBS is a dictionary 
containing a number of constants representing probabilities of various different events. 
All of these events have to do with how many copies of a particular gene a person has 
(hereafter referred to as simply “the gene”), and whether a person exhibits a particular 
trait (hereafter referred to as “the trait”) based on that gene. The data here is loosely 
based on the probabilities for the hearing impairment version of the GJB2 gene and the 
hearing impairment trait, but by changing these values, you could use your AI to draw 
inferences about other genes and traits as well!

First, PROBS["gene"] represents the unconditional probability distribution over the gene 
(i.e., the probability if we know nothing about that person’s parents). Based on the data 
in the distribution code, it would seem that in the population, there’s a 1% chance of 
having 2 copies of the gene, a 3% chance of having 1 copy of the gene, and a 96% 
chance of having 0 copies of the gene.

Next, PROBS["trait"] represents the conditional probability that a person exhibits a trait 
(like hearing impairment). This is actually three different probability distributions: one for
each possible value for gene. So PROBS["trait"][2] is the probability distribution that a 
person has the trait given that they have two versions of the gene: in this case, they 
have a 65% chance of exhibiting the trait, and a 35% chance of not exhibiting the trait. 
Meanwhile, if a person has 0 copies of the gene, they have a 1% chance of exhibiting the
trait, and a 99% chance of not exhibiting the trait.

Finally, PROBS["mutation"] is the probability that a gene mutates from being the gene in 
question to not being that gene, and vice versa. If a mother has two versions of the 
gene, for example, and therefore passes one on to her child, there’s a 1% chance it 
mutates into not being the target gene anymore. Conversely, if a mother has no versions
of the gene, and therefore does not pass it onto her child, there’s a 1% chance it 
mutates into being the target gene. It’s therefore possible that even if neither parent has
any copies of the gene in question, their child might have 1 or even 2 copies of the gene.

Ultimately, the probabilities you calculate will be based on these values in PROBS.

Now, take a look at the main function. The function first loads data from a file into a 
dictionary people. people maps each person’s name to another dictionary containing 
information about them: including their name, their mother (if one is listed in the data 
set), their father (if one is listed in the data set), and whether they are observed to have 
the trait in question (True if they do, False if they don’t, and None if we don’t know).

Next, main defines a dictionary of probabilities, with all probabilities initially set to 0. 
This is ultimately what your project will compute: for each person, your AI will calculate 
the probability distribution over how many of copies of the gene they have, as well as 
whether they have the trait or not. probabilities["Harry"]["gene"][1], for example, will 



be the probability that Harry has 1 copy of the gene, and probabilities["Lily"]["trait"]
[False] will be the probability that Lily does not exhibit the trait.

If unfamiliar, this probabilities dictionary is created using a Python dictionary 
comprehension, which in this case creates one key/value pair for each person in our 
dictionary of people.

Ultimately, we’re looking to calculate these probabilities based on some evidence: given 
that we know certain people do or do not exhibit the trait, we’d like to determine these 
probabilities. Recall that we can calculate a conditional probability by summing up all of 
the joint probabilities that satisfy the evidence, and then normalize those probabilities so
that they each sum to 1. Your task in this project is to implement three functions to do 
just that: joint_probability to compute a joint probability, update to add the newly 
computed joint probability to the existing probability distribution, and then normalize to 
ensure all probability distributions sum to 1 at the end.

Task Specification
Complete the implementations of joint_probability, update, and normalize.
The joint_probability function should take as input a dictionary of people, along with 
data about who has how many copies of each of the genes, and who exhibits the trait. 
The function should return the joint probability of all of those events taking place.

 The function accepts four values as input: people, one_gene, two_genes, and have_trait.
o people is a dictionary of people as described in the “Understanding” section. The keys

represent names, and the values are dictionaries that 
contain mother and father keys. You may assume that either mother and father are 
both blank (no parental information in the data set), or mother and father will both 
refer to other people in the people dictionary.

o one_gene is a set of all people for whom we want to compute the probability that they 
have one copy of the gene.

o two_genes is a set of all people for whom we want to compute the probability that 
they have two copies of the gene.

o have_trait is a set of all people for whom we want to compute the probability that 
they have the trait.

o For any person not in one_gene or two_genes, we would like to calculate the 
probability that they have no copies of the gene; and for anyone not in have_trait, 
we would like to calculate the probability that they do not have the trait.

 For example, if the family consists of Harry, James, and Lily, then calling this function 
where one_gene = {"Harry"}, two_genes = {"James"}, and trait = {"Harry", 
"James"} should calculate the probability that Lily has zero copies of the gene, Harry has 
one copy of the gene, James has two copies of the gene, Harry exhibits the trait, James 
exhibits the trait, and Lily does not exhibit the trait.

 For anyone with no parents listed in the data set, use the probability 
distribution PROBS["gene"] to determine the probability that they have a particular number 
of the gene.

 For anyone with parents in the data set, each parent will pass one of their two genes on to 
their child randomly, and there is a PROBS["mutation"] chance that it mutates (goes from 
being the gene to not being the gene, or vice versa).

 Use the probability distribution PROBS["trait"] to compute the probability that a person 
does or does not have a particular trait.

https://www.python.org/dev/peps/pep-0274/
https://www.python.org/dev/peps/pep-0274/


The update function adds a new joint distribution probability to the existing probability 
distributions in probabilities.

 The function accepts five values as 
input: probabilities, one_gene, two_genes, have_trait, and p.
o probabilities is a dictionary of people as already described. Each person is mapped 

to a "gene" distribution and a "trait" distribution.
o one_gene is a set of people with one copy of the gene in the current joint distribution.
o two_genes is a set of people with two copies of the gene in the current joint 

distribution.
o have_trait is a set of people with the trait in the current joint distribution.
o p is the probability of the joint distribution.

 For each person person in probabilities, the function should update 
the probabilities[person]["gene"] distribution and probabilities[person]
["trait"] distribution by adding p to the appropriate value in each distribution. All other 
values should be left unchanged.

 For example, if "Harry" were in both two_genes and in have_trait, then p would be added 
to probabilities["Harry"]["gene"][2] and to probabilities["Harry"]["trait"][True].

 The function should not return any value: it just needs to update 
the probabilities dictionary.

The normalize function updates a dictionary of probabilities such that each probability 
distribution is normalized (i.e., sums to 1, with relative proportions the same).

 The function accepts a single value: probabilities.
o probabilities is a dictionary of people as described in the “Understanding” section. 

Each person is mapped to a "gene" distribution and a "trait" distribution.
 For both of the distributions for each person in probabilities, this function should 

normalize that distribution so that the values in the distribution sum to 1, and the relative 
values in the distribution are the same.

 For example, if probabilities["Harry"]["trait"][True] were equal 
to 0.1 and probabilities["Harry"]["trait"][False] were equal to 0.3, then your 
function should update the former value to be 0.25 and the latter value to be 0.75: the 
numbers now sum to 1, and the latter value is still three times larger than the former value.

 The function should not return any value: it just needs to update 
the probabilities dictionary.

Example Joint Probability
To help you think about how to calculate joint probabilities, we’ve included below an 
example.

Consider the following value for people:
{
  'Harry': {'name': 'Harry', 'mother': 'Lily', 'father': 'James', 'trait': None},
  'James': {'name': 'James', 'mother': None, 'father': None, 'trait': True},
  'Lily': {'name': 'Lily', 'mother': None, 'father': None, 'trait': False}
}

We will here show the calculation of joint_probability(people, {"Harry"}, {"James"}, 
{"James"}). Based on the arguments, one_gene is {"Harry"}, two_genes is {"James"}, 
and has_trait is {"James"}. This therefore represents the probability that: Lily has 0 
copies of the gene and does not have the trait, Harry has 1 copy of the gene and does 
not have the trait, and James has 2 copies of the gene and does have the trait.

https://cs50.harvard.edu/ai/2020/projects/2/heredity/#example-joint-probability


We start with Lily (the order that we consider people does not matter, so long as we 
multiply the correct values together, since multiplication is commutative). Lily has 0 
copies of the gene with probability 0.96 (this is PROBS["gene"][0]). Given that she has 0 
copies of the gene, she doesn’t have the trait with probability 0.99 (this is PROBS["trait"]
[0][False]). Thus, the probability that she has 0 copies of the gene and she doesn’t have
the trait is 0.96 * 0.99 = 0.9504.

Next, we consider James. James has 2 copies of the gene with probability 0.01 (this 
is PROBS["gene"][2]). Given that he has 2 copies of the gene, the probability that he does 
have the trait is 0.65. Thus, the probability that he has 2 copies of the gene and he does 
have the trait is 0.01 * 0.65 = 0.0065.

Finally, we consider Harry. What’s the probability that Harry has 1 copy of the gene? 
There are two ways this can happen. Either he gets the gene from his mother and not his
father, or he gets the gene from his father and not his mother. His mother Lily has 0 
copies of the gene, so Harry will get the gene from his mother with probability 0.01 (this 
is PROBS["mutation"]), since the only way to get the gene from his mother is if it mutated;
conversely, Harry will not get the gene from his mother with probability 0.99. His father 
James has 2 copies of the gene, so Harry will get the gene from his father with 
probability 0.99 (this is 1 - PROBS["mutation"]), but will get the gene from his mother 
with probability 0.01 (the chance of a mutation). Both of these cases can be added 
together to get 0.99 * 0.99 + 0.01 * 0.01 = 0.9802, the probability that Harry has 1 copy
of the gene.

Given that Harry has 1 copy of the gene, the probability that he does not have the trait 
is 0.44 (this is PROBS["trait"][1][False]). So the probability that Harry has 1 copy of the 
gene and does not have the trait is 0.9802 * 0.44 = 0.431288.

Therefore, the entire joint probability is just the result of multiplying all of these values 
for each of the three people: 0.9504 * 0.0065 * 0.431288 = 0.0026643247488.

Implementation Hints
Recall that to compute a joint probability of multiple events, you can do so by multiplying those 
probabilities together. But remember that for any child, the probability of them having a certain 
number of genes is conditional on what genes their parents have.

Submission Guidelines 
Each dataset has people that don’t have any value for the trait. You should not need to modify 
anything else in heredity.py other than the three functions the specification calls for you to 
implement, though you may write additional functions and/or import other Python standard 
library modules. You may also import numpy, if familiar with it, but you should not need to use 
any other third-party Python modules.


