
Nim 

Description 
Write an AI that teaches itself to play Nim through reinforcement learning. 

Introduction 
Recall that in the game Nim, we begin with some number of piles, each with some number of objects. 

Players take turns: on a player’s turn, the player removes any non-negative number of objects from any 

one non-empty pile. Whoever removes the last object loses. 

There’s some simple strategy you might imagine for this game: if there’s only one pile and three objects left 

in it, and it’s your turn, your best bet is to remove two of those objects, leaving your opponent with the 

third and final object to remove. But if there are more piles, the strategy gets considerably more 

complicated. In this problem, we’ll build an AI to learn the strategy for this game through reinforcement 

learning. By playing against itself repeatedly and learning from experience, eventually our AI will learn 

which actions to take and which actions to avoid. 

We’ll use Q-learning for this project. Recall that in Q-learning, we try to learn a reward value (a number) for 

every (state, action) pair. An action that loses the game will have a reward of -1, an action that 

results in the other player losing the game will have a reward of 1, and an action that results in the game 

continuing has an immediate reward of 0 but will also have some future reward. 

How will we represent the states and actions inside of a Python program? A “state” of the Nim game is just 

the current size of all of the piles. A state, for example, might be [1, 1, 3, 5], representing the state 

with 1 object in pile 0, 1 object in pile 1, 3 objects in pile 2, and 5 objects in pile 3. An “action” in the Nim 

game will be a pair of integers (i, j), representing the action of taking j objects from pile i. So, the 

action (3, 5) represents the action “from pile 3, take away 5 objects.” Applying that action to the state 

[1, 1, 3, 5] would result in the new state [1, 1, 3, 0] (the same state, but with pile 3 now empty). 

Recall that the key formula for Q-learning is below. Every time we are in a state s and take an action a, we 

can update the Q-value Q(s, a) according to: 

Q(s, a) <- Q(s, a) + alpha * (new value estimate - old value estimate) 

In the above formula, alpha is the learning rate (how much we value new information compared to 

information we already have). The new value estimate represents the sum of the reward received for 

the current action and the estimate of all the future rewards that the player will receive. The old value 

estimate is just the existing value for Q(s, a). By applying this formula every time our AI takes a new 

action, over time our AI will start to learn which actions are better in any state. 

Understanding the Environment 
First, open nim.py. There are two classes defined in this file (Nim and NimAI) along with two functions 

(train and play). Nim, train, and play have already been implemented for you, while NimAI leaves a 

few functions left for you to implement. 



Look at the Nim class, which defines how a Nim game is played. In the __init__ function, notice that 

every Nim game needs to keep track of a list of piles, a current player (0 or 1), and the winner of the game 

(if one exists). The available_actions function returns a set of all the available actions in a state. For 

example, Nim.available_actions([2, 1, 0, 0]) returns the set {(0, 1), (1, 1), (0, 2)}, 

since the three possible actions are to take either 1 or 2 objects from pile 0, or to take 1 object from pile 1. 

The remaining functions are used to define the gameplay: the other_player function determines who 

the opponent of a given player is, switch_player changes the current player to the opposing player, and 

move performs an action on the current state and switches the current player to the opposing player. 

Next, look at the NimAI class, which defines our AI that will learn to play Nim. Notice that in the __init__ 

function, we start with an empty self.q dictionary. The self.q dictionary will keep track of all the 

current Q-values learned by our AI by mapping (state, action) pairs to a numerical value. As an 

implementation detail, though we usually represent state as a list, since lists can’t be used as Python 

dictionary keys, we’ll instead use a tuple version of the state when getting or setting values in self.q. 

For example, if we wanted to set the Q-value of the state [0, 0, 0, 2] and the action (3, 2) to -1, we 

would write something like 

self.q[(0, 0, 0, 2), (3, 2)] = -1 

Notice, too, that every NimAI object has an alpha and epsilon value that will be used for Q-learning and 

for action selection, respectively. 

The update function is written for you, and takes as input state old_state, an action takes in that state 

action, the resulting state after performing that action new_state, and an immediate reward for taking 

that action reward. The function then performs Q-learning by first getting the current Q-value for the state 

and action (by calling get_q_value), determining the best possible future rewards (by calling 

best_future_reward), and then using both of those values to update the Q-value (by calling 

update_q_value). Those three functions are left to you to implement. 

Finally, the last function left unimplemented is the choose_action function, which selects an action to 

take in a given state (either greedily or using the epsilon-greedy algorithm). 

The Nim and NimAI classes are ultimately used in the train and play functions. The train function 

trains an AI by running n simulated games against itself, returning the fully trained AI. The play function 

accepts a trained AI as input, and lets a human player play a game of Nim against the AI. 

Task Specification 
Complete the implementation of get_q_value, update_q_value, best_future_reward, and 

choose_action in nim.py. For each of these functions, any time a function accepts a state as input, 

you may assume it is a list of integers. Any time a function accepts an action as input, you may assume it 

is an integer pair (i, j) of a pile i and a number of objects j. 

The get_q_value function should accept as input a state and action and return the corresponding Q-

value for that state/action pair. 



• Recall that Q-values are stored in the dictionary self.q. The keys of self.q should be in the form 

of (state, action) pairs, where state is a tuple of all piles’ sizes in order, and action is a tuple 

(i, j) representing a pile and a number. 

• If no Q-value for the state/action pair exists in self.q, then the function should return 0. 

The update_q_value function takes a state state, an action action, an existing Q value old_q, a 

current reward reward, and an estimate of future rewards future_rewards, and updates the Q-value 

for the state/action pair according to the Q-learning formula. 

• Recall that the Q-learning formula is: Q(s, a) <- old value estimate + alpha * (new 

value estimate - old value estimate) 

• Recall that alpha is the learning rate associated with the NimAI object. 

• The old value estimate is just the existing Q-value for the state/action pair. The new value estimate 

should be the sum of the current reward and the estimated future reward. 

The best_future_reward function accepts a state as input and returns the best possible reward for 

any available action in that state, according to the data in self.q. 

• For any action that doesn’t already exist in self.q for the given state, you should assume it has a 

Q-value of 0. 

• If no actions are available in the state, you should return 0. 

The choose_action function should accept a state as input (and optionally an epsilon flag for 

whether to use the epsilon-greedy algorithm) and return an available action in that state. 

• If epsilon is False, your function should behave greedily and return the best possible action 

available in that state (i.e., the action that has the highest Q-value, using 0 if no Q-value is known). 

• If epsilon is True, your function should behave according to the epsilon-greedy algorithm, 

choosing a random available action with probability self.epsilon and otherwise choosing the 

best action available. 

• If multiple actions have the same Q-value, any of those options is an acceptable return value. 

Implementation Hints 
If lst is a list, then tuple(lst) can be used to convert lst into a tuple. 

Submission Guidelines 
You should not need to modify anything else in nim.py other than the functions the specification calls for 

you to implement, though you may write additional functions and/or import other Python standard library 

modules. You may also import numpy or pandas, if familiar with them, but you should not need to use any 

other third-party Python modules. You may modify play.py to test on your own, but when grading your 

peers please use the original file. 

Using numpy and pandas is not necessary nor required to complete this exercise and we do not offer any 

support if you choose to use them. You can ask the assistants if they can offer any help with either of them 

but there are no guarantees. 



Peer-review Guidelines 
Open play.py in an editor and change the value of the variable peer_grading_mode to True. Run 

play.py which will start by training the AI agent of your peer student, then will allow you to play 5 games 

against it. Try to play to beat the AI: 

The number of training episodes is set at 10,000 by default. Do not change that value when doing peer-

reviewing. The training will take some time, but it should not exceed 5 minutes. 

While playing against your fellow student’s program you concentrate on the following: 

• How many times (out of the five games) the AI beat you and how many times you beat the AI? 

o AI beat you on all games 

o You were able to beat the AI in some games but not all of them 

o You beat the AI in all the games 

o The program didn’t start, or it failed some other way 

• How fast the AI played? 

o The AI should not take more than a minute to think of its move but the faster the better as 

long as the AI still wins. 

• Try to think of something positive to say about your fellow student’s program. 

o Look at the code and compare the differences to your code 

o Perhaps the AI was implemented especially cleverly and/or efficiently 

o Did you learn something? 

• Is there something that could be improved or done differently? 

o Do you have some advice or suggestions to offer to your fellow student? 

o Remember that the point is not to insult anyone 

o Only the AI and its performance are reviewed and not the person who wrote the program 

After peer-reviewing is done, consider playing against your fellow student’s AI with output produced by 

your own AI. 

Remember that your own AI is also reviewed with the same criteria. 


