

Reinforcement Learning

CHAPTER 21 IN THE TEXTBOOK

Double Bandits

Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

Play Red 150
Play Blue 100

No discount 100 time steps Both states have the same value

Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Online Planning

• Rules changed! Red's win chance is different.

Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model *T*(*s*, *a*, *s*')
 - A reward function R(s, a, s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e., we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

- · Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

Example: Learning to Walk

Example: Learning to Walk

Finished

Example: Sidewinding

[And Petw Mg] | ARTIFICIAL INTELLIGENCE | WINTER 2022

[Video: SNAKE – climbStep+sidewinding]

The Crawler!

Video of Demo Crawler Bot

DeepMind Atari (©Two Minute Lectures)

Offline (MDPs) vs. Online (RL)

Online Learning

Passive Reinforcement Learning

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')

- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 **Learned Model**

 $\widehat{T}(s, a, s')$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

 $\widehat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

•••

Analogy: Expected Age

Goal: Compute expected age of DATA.ML.310 students

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Model-Free Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s, a, s')
 - You don't know the rewards R(s, a, s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Output Values

Assume: $\gamma = 1$

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 -10 A +8 B +8 C +4 +10 D D

If B and E both go to C under this policy, how can their values be different?

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

• We want to improve our estimate of *V* by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$
...
$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference Learning

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of
$$V(s)$$
: $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to
$$V(s)$$
: $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

- Makes recent samples more important
- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

C, east, D, -2

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s, a) = 0$, which we know is right
 - Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s, a) values as you go
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
 no longer policy evaluation!

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Active Reinforcement Learning

Q-Learning: act according to current optimal (and also explore...)

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s, a, s')
 - You don't know the rewards R(s, a, s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Model-Based Learning

Input Policy π

act according to current optimal also explore!

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- Update estimates each transition (s,a,r,s^{\prime})
- Over time, updates will mimic Bellman updates

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s, a, r, s')
 - This sample suggests

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$$

- But we want to average over results from (s, a) (Why?)
- So keep a running average

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:

$$Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

• Note: this propagates the "bonus" back to states that lead to unknown states as well!

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

[Demo: exploration – Q-learning – crawler – exploration function (L110型)]

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference betweer your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all *q*-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the *q*-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]

[Demo: Q-learning – pacman – tiny – silent train (L11D6)]

[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition } = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \quad & \text{Approximate Q's} \end{aligned}$$

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{s'} Q(s', a') = -500 + 0$

difference
$$= -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

[Demo: approximate Q-learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Policy Search

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g., Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

[Andrew Ng] | ARTIFICIAL INTELLIGENCE | WINTER 2022

[Video: HELICOPTER]