
Parser

Description

Write an AI to parse sentences and extract noun phrases.

Introduction

A common task in natural language processing is parsing, the process of determining the

structure of a sentence. This is useful for a number of reasons: knowing the structure of a

sentence can help a computer to better understand the meaning of the sentence, and it

can also help the computer extract information out of a sentence. In particular, it’s often

useful to extract noun phrases out of a sentence to get an understanding for what the

sentence is about.

In this problem, we’ll use the context-free grammar formalism to parse English sentences to

determine their structure. In a context-free grammar, we repeatedly apply rewriting rules to

transform symbols into other symbols. The objective is to start with a nonterminal

symbol S (representing a sentence) and repeatedly apply context-free grammar rules until

we generate a complete sentence of terminal symbols (i.e., words). The rule S -> N V, for

example, means that the S symbol can be rewritten as N V (a noun followed by a verb). If

we also have the rule N -> "Holmes" and the rule V -> "sat", we can generate the complete

sentence "Holmes sat.".

Of course, noun phrases might not always be as simple as a single word like "Holmes". We

might have noun phrases like "my companion" or "a country walk" or "the day before

Thursday", which require more complex rules to account for. To account for the phrase "my

companion", for example, we might imagine a rule like:

NP -> N | Det N

In this rule, we say that an NP (a “noun phrase”) could be either just a noun (N) or a

determiner (Det) followed by a noun, where determiners include words like "a", "the",

and "my". The vertical bar (|) just indicates that there are multiple possible ways to rewrite

an NP, with each possible rewrite separated by a bar.

To incorporate this rule into how we parse a sentence (S), we’ll also need to modify our S ->

N V rule to allow for noun phrases (NPs) as the subject of our sentence. And to account for

more complex types of noun phrases, we may need to modify our grammar even further.

Installing the NLTK library

In this exercise we practice NLP through working with one of the most popular libraries for it:

Natural Language ToolKit (NLTK).

You will need to install this library for Python in order to complete this exercise. To do that, you

first need to make sure you are using Python ≤ 3.7 (it might be useful to look up creating

virtual environments with a specific Python version). Next, follow the steps below:

1. In a terminal, type: pip install nltk (you might need to use pip3 instead of pip

depending on your settings).

2. In a Python console, run: import nltk; nltk.download()

3. Choose all relevant nltk components and download them

4. Use nltk like any Python library and read the documentation online for help

(https://www.nltk.org/)

Understanding the Environment

First, look at the text files in the sentences directory. Each file contains an English sentence.

Your goal in this problem is to write a parser that is able to parse all of these sentences.

Take a look now at parser.py, and notice the context free grammar rules defined at the top

of the file. We’ve already defined for you a set of rules for generating terminal symbols (in

the global variable TERMINALS). Notice that Adj is a nonterminal symbol that generates

adjectives, Adv generates adverbs, Conj generates conjunctions, Det generates

determiners, N generates nouns (spread across multiple lines for readability), P generates

prepositions, and V generates verbs.

Next is the definition of NONTERMINALS, which will contain all of the context-free grammar

rules for generating nonterminal symbols. Right now, there’s just a single rule: S -> N V. With

just that rule, we can generate sentences like "Holmes arrived." or "He chuckled.", but not

sentences more complex than that. Editing the NONTERMINALS rules so that all of the

sentences can be parsed will be up to you!

Next, take a look at the main function. It first accepts a sentence as input, either from a file

or via user input. The sentence is preprocessed (via the preprocess function) and then

parsed according to the context-free grammar defined by the file. The resulting trees are

printed out, and all of the “noun phrase chunks” (defined in the Specification) are printed as

well (via the np_chunk function).

In addition to writing context-free grammar rules for parsing these sentences,

the preprocess and np_chunk functions are left up to you!

https://www.nltk.org/

Task Specification

Complete the implementation of preprocess and np_chunk, and complete the context-free

grammar rules defined in NONTERMINALS.

• The preprocess function should accept a sentence as input and return a lowercased list

of its words.

o You may assume that sentence will be a string.

o You should use nltk’s word_tokenize function to perform tokenization.

o Your function should return a list of words, where each word is a lowercased string.

o Any word that doesn’t contain at least one alphabetic character (e.g. . or 28)

should be excluded from the returned list.

• The NONTERMINALS global variable should be replaced with a set of context-free

grammar rules that, when combined with the rules in TERMINALS, allow the parsing of all

sentences in the sentences/ directory.

o Each rules must be on its own line. Each rule must include the -> characters to

denote which symbol is being replaced, and may optionally include | symbols if

there are multiple ways to rewrite a symbol.

o You do not need to keep the existing rule S -> N V in your solution, but your first rule

must begin with S -> since S (representing a sentence) is the starting symbol.

o You may add as many nonterminal symbols as you would like.

o Use the nonterminal symbol NP to represent a “noun phrase”, such as the subject

of a sentence.

• The np_chunk function should accept a tree representing the syntax of a sentence,

and return a list of all of the noun phrase chunks in that sentence.

o For this problem, a “noun phrase chunk” is defined as a noun phrase that doesn’t

contain other noun phrases within it. Put more formally, a noun phrase chunk is a

subtree of the original tree whose label is NP and that does not itself contain other

noun phrases as subtrees.

▪ For example, if "the home" is a noun phrase chunk, then "the armchair in the

home" is not a noun phrase chunk, because the latter contains the former as

a subtree.

o You may assume that the input will be a nltk.tree object whose label is S (that is to

say, the input will be a tree representing a sentence).

o Your function should return a list of nltk.tree objects, where each element has the

label NP.

o You will likely find the documentation for nltk.tree helpful for identifying how to

manipulate a nltk.tree object.

Implementation Hints

• It’s to be expected that your parser may generate some sentences that you believe

are not syntactically or semantically well-formed. You need not worry, therefore, if your

parser allows for parsing meaningless sentences like "His Thursday chuckled in a paint."

https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.punkt.PunktLanguageVars.word_tokenize
https://www.nltk.org/_modules/nltk/tree.html

o That said, you should avoid over-generation of sentences where possible. For

example, your parser should definitely not accept sentences like "Armchair on the

sat Holmes."

o You should also avoid under-generation of sentences. A rule like S -> N V Det Adj

Adj Adj N P Det N P Det N would technically successfully generate sentence 10,

but not in a way that is particularly useful or generalizable.

o You should make rules to try to be as general as possible without over-generating.

In particular, consider how you might get your parser to accept the sentence

“Holmes sat in the armchair.” (and “Holmes sat in the red armchair.” and “Holmes

sat in the little red armchair.”), but have it not accept the sentence “Holmes sat in

the the armchair.”

• It’s to be expected that your parser may generate multiple ways to parse a sentence.

English grammar is inherently ambiguous!

• Within the nltk.tree documentation, you may find the label and subtrees functions

particularly useful.

• To focus on testing your parser before working on noun phrase chunking, it may be

helpful to temporarily have np_chunk simply return an empty list [], so that your

program can operate without noun phrase chunking while you test the other parts of

your program.

Submission Guidelines

You should not need to modify anything else in parser.py other than the functions the

specification calls for you to implement, though you may write additional functions and/or

import other Python standard library modules. You will need to modify the definition

of NONTERMINALS, but you should not modify the definition of TERMINALS.

https://www.nltk.org/_modules/nltk/tree.html

