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1. Background and example

Starting point: a directed weighted graph G = (V, E)

Goal: given a starting node s (source) and a target node ¢, find shortest path from s to ¢, if
such a path exists

o for edge (x,y), weight w({x, y)) is interpreted as a distance

e sometimes called simply shortest path problem (or single pair shortest path problem)

e assume non-negative weights

Example

Shortest path froms =Ftot=H?



A modified Dijkstra's algorithm can be used to solve the single-pair shortest path problem.

1 DIJKSTRAPAIR (s, t, G)

2 starting from source node s finds the shortest path to a
3 target node t given weighted graph G

4

5 forEach node z in G

6 z.color white, z.d =oc, z.w =NIL

7 end

9 /* Give source node appropriate values. x/
10 s.color = gray, sd=20

11 > initialize a priority queue @

12 INSERT (@ ,s,0)

13 while ) is not empty

14 x = EXTRACT-MIN( Q)

15 /* Check if target node has been found or not. =/
16 if £==1 then

17 return

18 end

19

20 forEach node y in z.Adj

21 y.old=y.d, RELAX(z, y)

22 if y.color == white then

23 /#* Node y is undiscovered. =/

24 y.color = gray, ynm==x

25 INSERT (@ ,y ,y.d)

26 else

27 if yd<yold and y.color # black then
28 /+* Take into account that y.old <yd. */
29 INSERT (@) ,y ,y.d)

30 end

31 end

32 end

33 x.color hlack

34 end




| RELAX(z, y)

2 When shorter path to y is found using edge (z,y), length y.d
3 and parent y.m are reset.

4

5 if yd>zd+w((z,y)) then

f /% Shorter path than current path found via edge (z,y). =/
7 yd=xd+w((z,y)), yr==x

8 end

Example (cont'd)
Shortest path from s = F to t = H using DIJKSTAPAIR.

i = order in which node handled
x.d = length of shortest path from s = F to x

s = edge of current shortest path tree
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Remarks

e Dijkstra often must process nodes that are never included in shortest path

e optimal processing would be that we only ever process nodes that are in shortest path

2. A* algortihm

Dijkstra selects next node @ from priority queue based on the length of the shortest path

from starting node s to x.

A" selects next node x based on an estimate e(x) of the length of the path from s to t that

goes through .



e(z) = g(s.z)+ h(z,t)

g(s.x) = length of shortest path from source s to node_ sz X

hiz.t) = estimate of length of path from node # to target node ¢
X

Note: g(s,x) is the same as x.d in Dijkstra
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What do we want from h(x,t)?

e Let the actual length of the shortest path from node = to node t be g((xz,t)). We
require hiz,t) < g((x,t)).

e The function h{x. t) must be easy (fast) to compute.

Example (contd)

When o amnd § are points on an (2, y}-plane with coordinates @ = (o, 7) and £ = (7. 4):

filz.t) = ((o—1 el T8 - -‘IZE]

For graph shown, using the
coordinates and above Euclidean
distance:
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To perform A* algorithm, for each node x we need the following.

e x.d length of shortest path x from source s to node = (hence g(s.x) thus far)

e z.e lower bound estimate of length of shortest path from s to target t assuming shortest
path goes through = (hence e(x) thus far)

e x.colour — color of node
e r.m — parent of node x in shortest path tree

e 1. Adj set containing nodes that are adjacent to =

A* maintains the z.e values of all gray nodes in a priority queue.

1 RELAX-ASTAR(z, y, t)

2 When shorter path to y is found using edge (z,y), length y.d
3 and parent y.m are reset. Also update estimate of length of
1 path to target via node y.

]

6 if yd>ad+uw((z,y)) then

7 [+ Shorter path than current path found via edge (z,y). */
8 yd=zd+w((z,y), yr=2, ye=yd+h(y,t)

9 end




1 ASTAR(s, t, G)

2 starting from source node s finds the shortest path to a
3 target node ¢t given weighted graph G

4

5 forEach node z in G

6 x.color white, z.d=o00, &a=NIL, xe=00
7 end

8

9 [+ Give source node appropriate values. */
10 s.wolor = gray, sd=10

11 > initialize a priority queue @

12 INSERT (@ ,s,0)

13 while ¢ is not empty

14 x = EXTRACT-MIN(@)

15

16 /* Check if target node has been found or not. =/
17 if x==1 then

18 return

19 end

21

21 forEach node y in z.Adj

22 y.old =ye, RELAX-ASTAR(x.y.t)

23 if y.color == white then

24 /# Node y is undiscovered. #/

25 y.color = gray, ym==x

26 INSERT (Q ,y.y-€)

27 else

28 if ye<y.old and y.color # black then
29 /+ Take into account that y.old <ye. #/
30 INSERT(Q ,y,y.e)

31 end

32 end

33 end

3 x.color = black

35 end




Example (contd)
Shortest path from s = F to t = H using ASTAR
I = order in which node handled

x.e = lower bound estimate of length of shortest path from s = F to t = H passing through x

> = edge of current shortest path tree
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continue ...
]



3. Remarks

e If h(x,t) = 0, then A" is same as Dijkstra.

e Two important properties of =iz, t):
admissible If hiz,t) is admissible, then hiz, t) < g((x,t)).
consistent If h(x, t) is consistent, then h(x.t) < h(y.t) + w({z.y)).
Why important?

— If h(x. 1) is admissible, then A" is gnaranteed to return a shortest path solution.

— If h(x.t) is consistent, then A4° is puaranteed to return a shortest path without

ever removing the node more than once from the priority queue.
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