

```
A modified Dijkstra's algorithm can be used to solve the single-pair shortest path problem.
        DIJKSTRAPAIR(s, t, G)
1
2
        starting from source node s finds the shortest path to a
 3
        target node t given weighted graph G
 4
 5
        forEach node x in G
 6
          x.color = white, x.d = \infty, x.\pi = NIL
 7
        end
 8
9
        /* Give source node appropriate values. */
        s.color = gray, s.d = 0
10
11

⊳ initialize a priority queue Q

12
        INSERT(Q, s, 0)
        while Q is not empty
13
14
          x = \text{EXTRACT-MIN}(Q)
15
          /* Check if target node has been found or not. */
          if x == t then
16
17
              return
18
          end
19
          forEach node y in x.Adj
20
21
              y.old = y.d, RELAX(x, y)
              if y.color == white then
22
                 /* Node y is undiscovered. */
23
                 y.color = gray, y.\pi = x
24
                 INSERT(Q, y, y.d)
25
26
              else
                 if y.d < y.old and y.color \neq black then
27
                    /* Take into account that y.old < y.d. */
28
29
                   INSERT(Q, y, y.d)
30
                 end
              end
31
          end
32
          x.color = black
33
34
        end
```

```
RELAX(x, y)
1
2
        When shorter path to y is found using edge (x,y), length y.d
        and parent y.\pi are reset.
3
4
        if y.d > x.d + w((x,y)) then
        /* Shorter path than current path found via edge (x,y). */
           y.d = x.d + w((x, y)), y.\pi = x
        end
Example (cont'd)
Shortest path from s = F to t = H using DIJKSTAPAIR.
i = order in which node handled
x.d = length of shortest path from s = F to x
  = edge of current shortest path tree
         6.1
                10.7
                                    4.0
  8.3
                                   6.2
                                           11.8
           4.1
                 12.2
```


20010000							agreement of the same								'		
Тор	perfo	orm /	4* alg	goritl	nm, f	or ea	ch no	de x	we n	eed t	he fo	ollowi	ng.				
• x.	d lei	ngth	of sh	ortes	st pat	h x f	rom	sourc	e s to	o noc	ex	(henc	e g(s)	,x) t	hus	far)	
• x.	ath g	goes $ur =$	throu colo	igh x	(hen	nce <i>e</i> (x) th	ius fa	r)	path	fron	ı s to	targo	et t a	ssun	ning	shorte
• x.	Adj	set o	conta	ining	node	es tha	at are	e adja	acent	to x							
	541	(4)				1100	-C-211121		2,01		7- 1						
A* 1	main	ntain	s the	x.e	value	es of	all gr	ay n	odes	in a	prior	rity q	ueue	<u> </u>			
1 - 2 - 3 - 4	;	When and	shor parer	rter it <i>y.7</i>	τare	to y	et. 1		l usi upda	55754	2070)			370 10 17	755	_	
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p		te es	stima l via	ate o	f ler	gth	of		
- 2 3 - 4 - 5 - 6 - 7		When and path if y. /* S	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of		
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of		
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of		
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of		
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of	=	
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of	=	
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of	=	
2 3 4 5 6 7 8		When and path if y. /* S y.d	show parer to to $d > x$. horter	rter it $y.\pi$ targe d+u er pa	path τ are t via $e((x,y))$ th th	to y resea noc the	et. A le y. en curre	Also nt p	upda ath f	te es	stima l via	ate o	f ler	gth	of	=	

```
1
        ASTAR(s, t, G)
 2
        starting from source node s finds the shortest path to a
 3
        target node t given weighted graph G
 4
        forEach node x in G
 5
          x.color = white, x.d = \infty, x.\pi = NIL, x.e = \infty
 6
 7
        end
 8
        /* Give source node appropriate values. */
 9
10
        s.color = gray, s.d = 0
        \triangleright initialize a priority queue Q
11
        INSERT(Q, s, 0)
12
        while Q is not empty
13
14
          x = \text{EXTRACT-MIN}(Q)
15
          /* Check if target node has been found or not. */
16
           if x == t then
17
18
              return
          end
19
20
          for Each node y in x. Adj
21
             y.old = y.e, RELAX-ASTAR(x, y, t)
22
              if y.color == white then
23
                  /* Node y is undiscovered. */
24
                 y.color = gray, y.\pi = x
25
                 INSERT(Q, y, y.e)
26
27
              else
                  if y.e < y.old and y.color \neq black then
28
                    /* Take into account that y.old < y.e. */
29
                    INSERT(Q, y, y.e)
30
31
                 end
              end
32
          end
33
34
          x.color = black
35
        end
```


3.	Rema	rks														
-200	If h(m t) - 0	thon A	* is sam	o oc T	Niikoti	***									
_							d.									
•	Two im	portan	t prope	rties of	h(x,t)):										
				is adm												
- 9	consist	ent If	h(x,t)	is consi	istent,	then	h(x,t)	$() \leq h$	y(y,t)	+ w((x, y)).				
-	Why in	iportai	nt?													
	- If	h(x,t)	is adm	issible, t	then A	l* is g	uaran	iteed	to ret	urn a	shor	test p	ath s	solutio	on.	
_	- If	h(x,t)	is cons	istent,	then A	A* is g	guarai	nteed	to re	turn	a sho	rtest	path	with	out	
_	ev	er remo	oving th	ne node	more	than	once	from	the p	riority	y que	ue.				

Tämä teos on lis	ensoitu Creati	ve Comm	ons Nime	ä-EiKaup	allinen-			
EiMuutoksia 4.0					enssiä os	oitteess	a	
http://creativecor	Timoris.org/lice	:IISES/Dy-	110-110/4.0	<u>/</u> .				
tekijä: Frank Car	neron							
This work is licer						oony of		
NonCommercial- this license, visit								
made by Frank (Cameron							
	\bigcirc							
	$\sim 17-11$							
(CC)	⊗ (=)							
© ⊕ BY	NC ND							
© ⊕ BY	NC ND							
© ⊕ BY	NC ND							
© ⊕ BY	NC ND							
© (I)	NC ND							
© ⊕ BY	NC ND							
© ⊕ BY	NC ND							
BY BY	NC ND							
© ⊕ BY	NC ND							
BY	NC ND							
ВУ	NC ND							
BY	NC ND							
BY BY	NC ND							
BY	NC ND							
ВУ	NC ND							
BY	NC ND							